1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
12

A refrigerator uses refrigerant-134a as the working fluid and operates on the ideal vapor-compression refrigeration cycle except

for the compression process. The refrigerant enters the evaporator at 120 kPa with a quality of 34 percent and leaves the compressor at 70°C. If the compressor consumes 450 W of power, determine (a) the mass flow rate of the refrigerant, (b) the condenser pressure, and (c) the COP of the refrigerator

Engineering
1 answer:
malfutka [58]3 years ago
7 0

Answer:

(a) 0.0064 kg/s

(b) 800 KPa

(c) 2.03

Explanation:

The ideal vapor compression cycle consists of following processes:

Process  1-2 Isentropic compression in a compressor

Process 2-3 Constant-pressure heat rejection in a condenser

Process 3-4 Throttling in an expansion device

Process 4-1 Constant-pressure heat absorption in an evaporator

For state 4 (while entering compressor):

x₄ = 34% = 0.34

P₄ = 120 KPa

from saturated table:

h₄ = hf + x hfg = 22.4 KJ/kg + (0.34)(214.52 KJ/kg)

h₄ = 95.34 KJ/kg

For State 1 (Entering Compressor):

h₁ = hg at 120 KPa

h₁ = 236.99 KJ/kg

s₁ = sg at 120 KPa = 0.94789 KJ/kg.k

For State 3 (Entering Expansion Valve)

Since 3 - 4 is an isenthalpic process.

Therefore,

h₃ = h₄ = 95.34 KJ/kg

Since this state lies at liquid side of saturation line, therefore, h₃ must be hf. Hence from saturation table we find the pressure by interpolation.

P₃ = 800 KPa

For State 2 (Leaving Compressor)

Since, process 2-3 is at constant pressure. Therefore,

P₂ = P₃ = 800 KPa

T₂ = 70°C (given)

Saturation temperature at 800 KPa is 31.31°C, which is less than T₂. Thus, this is super heated state. From super heated property table:

h₂ = 306.9 KJ/kg

(a)

Compressor Power = m(h₂ - h₁)

where,

m = mass flow rate of refrigerant.

m = Compressor Power/(h₂ - h₁)

m = (0.450 KJ/s)/(306.9 KJ/kg - 236.99 KJ/kg)

<u>m = 0.0064 kg/s</u>

(b)

<u>Condenser Pressure = P₂ = P₃ = 800 KPa</u>

(c)

The COP of ideal vapor compression cycle is given as:

COP = (h₁ - h₄)/(h₂ - h₁)

COP = (236.99 - 95.34)/(306.9 - 236.99)

<u>COP = 2.03</u>

The Ph diagram is attached

You might be interested in
What is flow energy? Do fluids at rest possess any flow energy?
anzhelika [568]

Answer:

Flow energy is defined as, flow energy is the energy needed to push fluids into control volume and it is the amount of work done required to push the entire fluid. It is also known as flow work. Flow energy is not the fundamental quantities like potential and kinetic energy.

Fluid at state of rest do not possess any flow energy. It is mostly converted into internal energy as, rising in the fluid temperature.

8 0
3 years ago
Air enters a compressor steadily at the ambient conditions of 100 kPa and 22°C and leaves at 800 kPa. Heat is lost from the comp
telo118 [61]

Answer:

a) 358.8K

b) 181.1 kJ/kg.K

c) 0.0068 kJ/kg.K

Explanation:

Given:

P1 = 100kPa

P2= 800kPa

T1 = 22°C = 22+273 = 295K

q_out = 120 kJ/kg

∆S_air = 0.40 kJ/kg.k

T2 =??

a) Using the formula for change in entropy of air, we have:

∆S_air = c_p In \frac{T_2}{T_1} - Rln \frac{P_2}{P_1}

Let's take gas constant, Cp= 1.005 kJ/kg.K and R = 0.287 kJ/kg.K

Solving, we have:

[/tex] -0.40= (1.005)ln\frac{T_2}{295} ln\frac{800}{100}[/tex]

-0.40= 1.005(ln T_2 - 5.68697)- 0.5968

Solving for T2 we have:

T_2 = 5.8828

Taking the exponential on the equation (both sides), we have:

[/tex] T_2 = e^5^.^8^8^2^8 = 358.8K[/tex]

b) Work input to compressor:

w_in = c_p(T_2 - T_1)+q_out

w_in = 1.005(358.8 - 295)+120

= 184.1 kJ/kg

c) Entropy genered during this process, we use the expression;

Egen = ∆Eair + ∆Es

Where; Egen = generated entropy

∆Eair = Entropy change of air in compressor

∆Es = Entropy change in surrounding.

We need to first find ∆Es, since it is unknown.

Therefore ∆Es = \frac{q_out}{T_1}

\frac{120kJ/kg.k}{295K}

∆Es = 0.4068kJ/kg.k

Hence, entropy generated, Egen will be calculated as:

= -0.40 kJ/kg.K + 0.40608kJ/kg.K

= 0.0068kJ/kg.k

3 0
3 years ago
1). Mention any four operations that requires airlines. 2). Explain how airflow is applicable to the above mentioned operations.
vladimir2022 [97]

Answer:

Following are the answer to this question:

Explanation:

1)

Following the four operations in the airlines:

Landside operations:

In Airlines, the airports are divided into areas on the countryside and on the airside, in which landside region is available to the public, although strictly controlled access to the airside zone. Its area covers all areas of the airport across the aircraft, including parts of the buildings which can only be reached by customers and employees.

Airside Operations:

It's also committed to ensuring which air operations military exercises Ballarat airfields are safe and secure. It includes the provision of parking and flight escort services to itinerant and automates. Organizing operational response to incidents, accidents, or emergencies at the airport.

Billing and invoicing Operations:

This requires several steps, each of which must be performed with absolute accuracy to ensure that perhaps the airport operator is adequately paid for supplying passengers with all the services and infrastructure. After this, the receipts want to be produced and sent to customers on the airline.

Information management:

In this, it collects all the data about the customers and employees and it also helps in finding new routes and after collecting the data it processes on them.  

2)

It involves many activities in the airline, including dispatch, flight preparation, flight watch, weather information source, activities control, ground-to-air communications, and staff coordination, scheduling, and maintenance planning. Computing and expert programs are constantly being used to handle unpredictable activities.

4 0
3 years ago
A rigid tank having 25 m3 volume initially contains air having a density of 1.25 kg/m3, then more air is supplied to the tank fr
Hoochie [10]

Answer:

\Delta m = 102.25\,kg

Explanation:

The mass inside the rigid tank before the high pressure stream enters is:

m_{o} = \rho_{air}\cdot V_{tank}

m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{o} = 31.25\,kg

The final mass inside the rigid tank is:

m_{f} = \rho \cdot V_{tank}

m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{f}= 133.5\,kg

The supplied air mass is:

\Delta m = m_{f}-m_{o}

\Delta m = 133.5\,kg-31.25\,kg

\Delta m = 102.25\,kg

4 0
3 years ago
1. A team of students have designed a battery-powered cooler, which promises to keep beverages at a high-drinkability temperatur
Anit [1.1K]

Answer:

Minimum electrical power required = 3.784 Watts

Minimum battery size needed = 3.03 Amp-hr

Explanation:

Temperature of the beverages, T_L = 36^0 F = 275.372 K

Outside temperature, T_H = 100^0F = 310.928 K

rate of insulation, Q = 100 Btu/h

To get the minimum electrical power required, use the relation below:

\frac{T_L}{T_H - T_L} = \frac{Q}{W} \\W = \frac{Q(T_H - T_L)}{T_L}\\W = \frac{100(310.928 - 275.372)}{275.372}\\W = 12.91 Btu/h\\1 Btu/h = 0.293071 W\\W = 12.91 * 0.293071\\W_{min} = 3.784 Watt

V = 5 V

Power = IV

W_{min} = I_{min} V\\3.784 = 5I_{min}\\I_{min} = \frac{3.784}{5} \\I_{min} = 0.7568 A

If the cooler is supposed to work for 4 hours, t = 4 hours

I_{min} = 0.7568 * 4\\I_{min} = 3.03 Amp-hr

Minimum battery size needed = 3.03 Amp-hr

6 0
3 years ago
Other questions:
  • If a torque of M = 300 N⋅m is applied to the flywheel, determine the force that must be developed in the hydraulic cylinder CD t
    13·1 answer
  • Ammonia gas is diffusing at a constant rate through a layer of stagnant air 1 mm thick. Conditions are such that the gas contain
    14·1 answer
  • A cannon fires a ball vertically upward from the Earth’s surface. Which one of the following statements concerning the net force
    13·1 answer
  • What is the main purpose of the alternator?
    13·1 answer
  • What does it mean when it says technology is A dynamic process
    7·1 answer
  • A simple Rankine cycle coal-fired power plant has given states identified in the following table. The power plant produces 2.1 b
    9·1 answer
  • The number of pulses per second from IGBTs is referred to as
    10·1 answer
  • Think of an employee object. What are several of the possible states that the object may have over time?
    6·1 answer
  • Is santa real or nah is santa real or nah
    7·2 answers
  • I need your help to answer in the picture plss help me!​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!