Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Answer:
It’s so we can then understand other cultures and other ways that people do things or we can also be prepared for what a country that we have not been to yet is going to relatively be like. This can also help with vacation planning.
Explanation:
it can also help us understand different people from different cultures.
Explanation:
Please kindly share your problem two with us as to know the actual problem we are dealing with, the question looks incomplete
Answer:
Part a: The yield moment is 400 k.in.
Part b: The strain is 
Part c: The plastic moment is 600 ksi.
Explanation:
Part a:
As per bending equation

Here
- M is the moment which is to be calculated
- I is the moment of inertia given as

Here
- b is the breath given as 0.75"
- d is the depth which is given as 8"



The yield moment is 400 k.in.
Part b:
The strain is given as

The stress at the station 2" down from the top is estimated by ratio of triangles as

Now the steel has the elastic modulus of E=29000 ksi

So the strain is 
Part c:
For a rectangular shape the shape factor is given as 1.5.
Now the plastic moment is given as

The plastic moment is 600 ksi.