1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ganezh [65]
3 years ago
11

all of the following are steps in the problem solving process except a. try, b. reflect, c. debug, d. define

Engineering
1 answer:
IceJOKER [234]3 years ago
5 0

Answer:

a

Explanation:

You might be interested in
Which of the following is NOT associated with Urban Sprawl?
pochemuha

The option that is not associated with the given term called urban sprawl is; Option A: Blocking high views

What is Urban Sprawl?

Urban sprawl is defined as the rapid expansion of the geographic boundaries of towns and cities which is often accompanied by low-density residential housing and increased reliance on the private automobilefor movement.

Looking at the given options, "blocking high views" is the option that is not typically a problem associated with urban sprawl because urbanization usually takes place on relatively flat levels.

The missing options are;

a. blocking high views

b. destroying animal habitats

c. overrunning farmland

d. reducing green space

Read more about urban sprawl at; brainly.com/question/504389

8 0
2 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Given a matrix, clockwise-rotate elements in it. Please add code to problem3.cpp and the makefile. Use the code in p3 to test yo
rusak2 [61]

Answer:

/* C Program to rotate matrix by 90 degrees */

#include<stdio.h>

int main()

{

int matrix[100][100];

int m,n,i,j;

printf("Enter row and columns of matrix: ");

scanf("%d%d",&m,&n);

 

/* Enter m*n array elements */

printf("Enter matrix elements: \n");

for(i=0;i<m;i++)

{

 for(j=0;j<n;j++)

 {

  scanf("%d",&matrix[i][j]);

 }

}

 

/* matrix after the 90 degrees rotation */

printf("Matrix after 90 degrees roration \n");

for(i=0;i<n;i++)

{

 for(j=m-1;j>=0;j--)

 {

  printf("%d  ",matrix[j][i]);

 }

 printf("\n");

}

 

return 0;

 

}

5 0
3 years ago
I accidently peed my pants help me change me pls
nataly862011 [7]

Answer: *changed*

Explanation: Because you peed

3 0
3 years ago
Read 2 more answers
PLZ ASAP WILL GIVE BRAINLIST
gavmur [86]

Answer: A, B, C & F (interacting w computers, making decisions & solving problems, evaluating information & getting information).

Explanation: Those are the correct & verified answers.

7 0
3 years ago
Read 2 more answers
Other questions:
  • For a p-n-p BJT with NE 7 NB 7 NC, show the dominant current components, with proper arrows, for directions in the normal active
    14·1 answer
  • What is the capacity of the machine in batches?
    10·1 answer
  • Water at 20 °C is flowing with velocity of 0.5 m/s between two parallel flat plates placed 1 cm apart. Determine the distances f
    5·1 answer
  • Is it acceptable to mix used absorbents.
    8·2 answers
  • The design specifications of a 1.2-m long solid circular transmission shaft require that the angle of twist of the shaft not exc
    15·1 answer
  • Two satellites A and B are orbiting the earth around the equator, E, at different altitudes on a circular path of 2400km and 300
    8·1 answer
  • Create an abstract class DiscountPolicy. It should have a single abstract method computeDiscount that will return the discount f
    7·1 answer
  • Match the following items with their correct description.
    14·1 answer
  • Is a unit of measurement for angles
    15·1 answer
  • O local utilizado pelos grandes avioes para descolar e aterrar
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!