Answer:
7,217*10^28 atoms/m^3
Explanation:
- Metal: Vanadium
- Density: 6.1 g/cm^3
- Molecuar weight: 50,9 g/mol
The Avogadro's Number, 6,022*10^23, is the number of atoms in one mole of any substance. To calculate the number of atoms in one cubic meter of vanadium we write:
1m^3*(100^3 cm^3/1 m^3)*(6,1 g/1 cm^3)*(1 mol/50,9g)*(6,022*10^23 atoms/1 mol)=7,217*10^28 atoms
Therefore, for vanadium we have 7,217*10^28 atoms/m^3
The load is placed at distance 0.4 L from the end of
area.
<h3>What is meant by torque?</h3>
The force that can cause an object to rotate along an axis is measured as torque. Similar to how force accelerates an item in linear kinematics, torque accelerates an object in an angular direction. A vector quantity is torque.
Let the beam is of length L
Now the stress on both the end is the same now we can say that torque on the beam due to two forces must be zero

also, we know that stress at both ends are same


Now from two equations we have

solving the above equation we have

so the load is placed at distance 0.4 L from the end of
area.
The complete question is:
47. the beam is supported by two rods ab and cd that have cross-sectional areas of
and
, respectively. determine the position d of the 6-kn load so that the average normal stress in each rod is the same.
To learn more about torque refer to:
brainly.com/question/20691242
#SPJ4
Answer:
Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.
Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.
Mathematically in a plane AB the shearing stresses are given by

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.
Answer:
Most hydraulic systems develops pressure surges that may surpass settings valve. by exposing the hose surge to pressure above the maximum operating pressure will shorten the hose life.
Explanation:
Solution
Almost all hydraulic systems creates pressure surges that may exceed relief valve settings. exposing the hose surge to pressure above the maximum operating pressure shortens the hose life.
In systems where pressure peaks are severe, select or pick a hose with higher maximum operating pressure or choose a spiral reinforced hose specifically designed for severe pulsing applications.
Generally, hoses are designed or created to accommodate pressure surges and have operating pressures that is equal to 25% of the hose minimum pressure burst.
Answer:
This doesn't represent an equilibrium state of stress
Explanation:
∝ = 1 , β = 1 , y = 1
x = 0 , y = 0 , z = 0 ( body forces given as 0 )
Attached is the detailed solution is and also the conditions for equilibrium
for a stress state to be equilibrium all three conditions has to meet the equilibrum condition as explained in the attached solution