1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
15

30POINTS

Engineering
2 answers:
garri49 [273]3 years ago
3 0
Concentrating solar power (CSP) plants use mirrors to concentrate the sun's energy to drive traditional steam turbines or engines that create electricity. The thermal energy concentrated in a CSP plant can be stored and used to produce electricity when it is needed, day or night. Today, roughly 1,815 megawatts (MWac) of CSP plants are in operation in the United States.

Parabolic Trough
Parabolic trough systems use curved mirrors to focus the sun’s energy onto a receiver tube that runs down the center of a trough. In the receiver tube, a high-temperature heat transfer fluid (such as a synthetic oil) absorbs the sun’s energy, reaching temperatures of 750°F or higher, and passes through a heat exchanger to heat water and produce steam. The steam drives a conventional steam turbine power system to generate electricity. A typical solar collector field contains hundreds of parallel rows of troughs connected as a series of loops, which are placed on a north-south axis so the troughs can track the sun from east to west. Individual collector modules are typically 15-20 feet tall and 300-450 feet long.

Compact Linear Fresnel Reflector
CLFR uses the principles of curved-mirror trough systems, but with long parallel rows of lower-cost flat mirrors. These modular reflectors focus the sun's energy onto elevated receivers, which consist of a system of tubes through which water flows. The concentrated sunlight boils the water, generating high-pressure steam for direct use in power generation and industrial steam applications.
Alexxx [7]3 years ago
3 0

Answer:

Concentrating solar power (CSP) plants use mirrors to concentrate the sun's energy to drive traditional steam turbines or engines that create electricity. The thermal energy concentrated in a CSP plant can be stored and used to produce electricity when it is needed, day or night. Today, roughly 1,815 megawatts (MWac) of CSP plants are in operation in the United States.

Parabolic Trough

Parabolic trough systems use curved mirrors to focus the sun’s energy onto a receiver tube that runs down the center of a trough. In the receiver tube, a high-temperature heat transfer fluid (such as a synthetic oil) absorbs the sun’s energy, reaching temperatures of 750°F or higher, and passes through a heat exchanger to heat water and produce steam. The steam drives a conventional steam turbine power system to generate electricity. A typical solar collector field contains hundreds of parallel rows of troughs connected as a series of loops, which are placed on a north-south axis so the troughs can track the sun from east to west. Individual collector modules are typically 15-20 feet tall and 300-450 feet long.

Compact Linear Fresnel Reflector

CLFR uses the principles of curved-mirror trough systems, but with long parallel rows of lower-cost flat mirrors. These modular reflectors focus the sun's energy onto elevated receivers, which consist of a system of tubes through which water flows. The concentrated sunlight boils the water, generating high-pressure steam for direct use in power generation and industrial steam applications.

Explanation:

You might be interested in
Select the correct answer.
Genrish500 [490]
A is the correct answer
5 0
3 years ago
Write the output expression for a NOR gate with inputs , , and .​
mezya [45]

Answer:

Logic NOR Gate Equivalent

The Boolean expression for a logic NOR gate is denoted by a plus sign, ( + ) with a line or Overline, ( ‾‾ ) over the expression to signify the NOT or logical negation of the NOR gate giving us the Boolean expression of: A+B = Q.

4 0
2 years ago
Windmills slow the air and cause it to fill a larger channel as it passes through the blades. Consider a circular windmill with
Scilla [17]

Answer:

DIAMETER  = 9.797 m

POWER = \dot W = 28.6 kW

Explanation:

Given data:

circular windmill diamter D1 = 8m

v1 = 12 m/s

wind speed = 8 m/s

we know that specific volume is given as

v =\frac{RT}{P}

  where v is specific volume of air

considering air pressure is 100 kPa and temperature 20 degree celcius

v =  \frac{0.287\times 293}{100}

v = 0.8409 m^3/ kg

from continuity equation

A_1 V_1 = A_2 V_2

\frac{\pi}{4}D_1^2 V_1 = \frac{\pi}{4}D_1^2 V_2

D_2 = D_1 \sqrt{\frac{V_1}{V_2}}

D_2 = 8 \times \sqrt{\frac{12}{8}}

D_2 = 9.797 m

mass flow rate is given as

\dot m = \frac{A_1 V_1}{v} = \frac{\pi 8^2\times 12}{4\times 0.8049}

\dot m = 717.309 kg/s

the power produced \dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]

\dot W = 28.6 kW

8 0
3 years ago
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the mot
Thepotemich [5.8K]

78950W the answer

Explanation:

A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor

A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor

5 0
3 years ago
A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum
adoni [48]

Answer:

5.6 mm

Explanation:

Given that:

A cylindrical tank is required to contain a:

Gage Pressure P = 560 kPa

Allowable normal stress \sigma = 150 MPa = 150000 Kpa.

The inner diameter of the tank = 3 m

In a closed cylinder  there exist both the circumferential stress and the longitudinal stress.

Circumferential stress \sigma = \dfrac{pd}{2t}

Making thickness t the subject; we have

t = \dfrac{pd}{2* \sigma}

t = \dfrac{560000*3}{2*150000000}

t = 0.0056 m

t = 5.6 mm

For longitudinal stress.

\sigma = \dfrac{pd}{4t}

t= \dfrac{pd}{4*\sigma }

t = \dfrac{560000*3}{4*150000000}

t = 0.0028  mm

t = 2.8 mm

From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value  with the maximum thickness = 5.6 mm

8 0
3 years ago
Other questions:
  • Not a characteristic property of ceramic material (a) high temperature stability (b) high mechanical strength (c) low elongation
    7·2 answers
  • A composite wall is composed of 20 cm of concrete block with k = 0.5 W/m-K and 5 cm of foam insulation with k = 0.03 W/m-K. The
    13·1 answer
  • Buying shop supplies from the shop owner to work on your own car at home is an ethical practice.
    14·1 answer
  • Help Please!!!!!!!<br><br> Whatever3443<br> Please help!
    9·2 answers
  • To remove a spark plug the technician would need a(n) ___socket​
    7·2 answers
  • Define ways in which you would go about networking to explore opportunities in your career field and obtain more information for
    11·1 answer
  • Give five examples of
    14·1 answer
  • W
    7·1 answer
  • Why is communication one of the most important aspects of an engineer's job?
    12·1 answer
  • What is the difference between absorbed wavelengths and reflected wavelengths?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!