1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Advocard [28]
3 years ago
9

Technician A says diesel engines are also called compression ignition engines. Technician B says diesel engines have much higher

compression ratios. Who is correct
Engineering
1 answer:
konstantin123 [22]3 years ago
3 0

Answer:

Both Technician A and Technician B

Explanation: Both technicians are correct.

You might be interested in
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa. Water is stirred b
irinina [24]

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

Download docx
4 0
3 years ago
Gray cast iron, with an ultimate tensile strength of 31 ksi and an ultimate compressive strength of 109 ksi, has the following s
suter [353]

Using an appropriate failure theory, find the factor of safety in each case. State the name of the theory that you are using the theory is max stress theory.

<h3>Wat is the max stress theory?</h3>

The most shear strain concept states that the failure or yielding of a ductile fabric will arise whilst the most shear strain of the fabric equals or exceeds the shear strain fee at yield factor withinside the uniaxial tensile test.”

Stress states at various critical locations are f= 2.662.

Read more about strain:

brainly.com/question/6390757

#SPJ1

3 0
2 years ago
A coil with an average diameter of 5 inch will have an area of ""blank"" square meters
nadezda [96]

Answer:

19.64 square inches

Explanation:

Area will be (¶d^2)/4

= (3.142 x 5^2)/4

= 19.64 square inches

8 0
3 years ago
I need help on the Coderz Challenge missions 3 part 3. PLEASE HELP!
allsm [11]

Answer:

the answer how you analyzs the problwm

6 0
3 years ago
Read 2 more answers
Other questions:
  • Two infinite extent current sheets exist at z = −3.0 m and at z = +3.0 m. The top sheet has a uniform current
    11·1 answer
  • A 2.2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight
    5·1 answer
  • Plot the absorbance, A, versus the FeSCN2 concentration of the standard solutions (the values from your Pre-lab assignment). Fro
    7·1 answer
  • You are preparing to work with Chemical A. You open the appropriate storage cabinet, and notice Chemical B, as well as Chemical
    9·1 answer
  • If the old radiator is replaced with a new one that has longer tubes made of the same material and same thickness as those in th
    10·1 answer
  • I want to solve the question
    11·1 answer
  • Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
    7·1 answer
  • What subject is he......... now? Vietnamese.A. to learnB. learnC. learningD. learned
    10·1 answer
  • 9. What power tool incorporates a set of dies and punches to cut new
    8·1 answer
  • Which option distinguishes why the behaviors of the team in the following scenario are so important during the engineering desig
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!