1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
4 years ago
14

Planets orbit the Sun, while the Moon and other satellites orbit the Earth. Such orbital motion is the result of _______ and eac

h satellite's forward inertia.
Physics
1 answer:
Lorico [155]4 years ago
8 0
Gravity ? that is possibly the answer
You might be interested in
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
A monkey (mass m) is swinging on a vine of length L while carrying a bunch of bananas (a large bunch, mass m/2). His swinging mo
dmitriy555 [2]

Answer:

Explanation:

The period of oscillation will remain unchanged because the period of oscillation of a pendulum does not depend upon the mass of the bob  . Here monkey along with bunch of banana represents bob .

When the monkey and banana were at height h /2 , they have potential energy as well as kinetic energy . banana is separated from the system . It carried its total energy along with it . But the energy of monkey remained intact with it . So it will keep on moving as usual . So it will attain the same maximum height as before .

Hence the amplitude of oscillation too will remain unchanged .

6 0
3 years ago
A burglar attempts to drag a 108 kg metal safe across a polished wood floor Assume that the coefficient of static friction is 0.
V125BC [204]

Answer:

2.00 m/s²

Explanation:

Given

The Mass of the metal safe, M = 108kg

Pushing force applied by the burglar,  F = 534 N

Co-efficient of kinetic friction, \mu_k = 0.3

Now,

The force against the kinetic friction is given as:

f = \mu_k N = u_k Mg

Where,

N = Normal reaction

g= acceleration due to the gravity

Substituting the values in the above equation, we get

f = 0.3\times108\times9.8

or

f = 317.52N

Now, the net force on to the metal safe is

F_{Net}= F-f

Substituting the values in the equation we get

 F_{Net}= 534N-317.52N

or

F_{Net}= 216.48

also,

 

F_{Net}= M\timesacceleration of the safe

Therefore, the acceleration of the metal safe will be

acceleration of the safe=\frac{F_{Net}}{M}

or

 acceleration of the safe=\frac{216.48}{108}

or

 

acceleration of the safe=2.00 m/s^2

Hence, the acceleration of the metal safe will be  2.00 m/s²

3 0
3 years ago
You need to pull up the cart up this ramp. How would you change this ramp so it is easier to pull the cart up?
natali 33 [55]
I would make the ramp flatter. In doing so the ramp would have to be longer.
6 0
3 years ago
A rocket starts from rest to 12s , it’s speed became 120m. find the distance it covered
gayaneshka [121]

Answer:

1440 m

Explanation:

Speed = Distance/Time

Distance = Speed × Time

               = 120 × 12

               = <u>1440m</u>

7 0
3 years ago
Other questions:
  • 7. Mrs. Everhart developed the theory that all bulldogs are great pets. After all her bulldog Meatball is a
    13·1 answer
  • Can some one pls give me the knowns and unknowns , formula and answer for question 4,5,6
    12·1 answer
  • Two microwave signals of nearly equal wavelengths can generate a beat frequency if both are directed onto the same microwave det
    9·2 answers
  • The water skier has a mass of 73 kg. Find the magnitude of the
    11·1 answer
  • An astronaut in space cannot use a scale or balance to weigh objects because there is no gravity. But she does have devices to m
    8·1 answer
  • Consider three identical electric bulbs of power P. Two of bulbs are connected in series and the third one is connected in paral
    7·1 answer
  • What 3 factors should be considered when designing a lighting rod?
    10·1 answer
  • A person raises a box with a weight of 50 newtons by 0.5 meter. How much work does the person do in this action?(1 point)
    12·1 answer
  • a 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. if the initial potential energy is taken as zero, fin
    15·1 answer
  • Your car gets a flat! You go from 90 kilometers per hour to a stop in 6 seconds. What is your rate of deceleration? (it's negati
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!