1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
15

a 1.5 kg ball is thrown vertically upward with an initial speed of 15 m/s. if the initial potential energy is taken as zero, fin

d the ball's kinetic, potential, and mechanical energies (a) a its initial position, (b) at 5 m above the initial position, and (c) at its maximum height
Physics
1 answer:
trapecia [35]3 years ago
7 0

Answer:

a) E_{p} = 0

E_{k} = 168.7 J

E_{m} = 168.7 J

b) E_{p} = 73.6 J

E_{k} = 95.8 J

E_{m} = 169.4 J

c) E_{p} = 169.2 J

E_{k} = 0

E_{m} = 169.2 J

Explanation:

We have:

m: is the ball's mass = 1.5 kg

v₀: is the initial speed = 15 m/s

g: is the gravity acceleration = 9.81 m/s²

a) In the initial position we have:

h: is the height = 0

The potential energy is given by:

E_{p} = mgh = 0

The kinetic energy is:

E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}*1.5*(15)^{2} = 168.7 J

And the mechanical energies:

E_{m} = E_{p} + E_{k} = 0 + 168.7 J = 168.7 J

b) At 5 m above the initial position we have:

h = 5 m

The potential energy is:

E_{p} = mgh = 1.5*9.81*5 = 73.6 J

Now, to find the kinetic energy we need to calculate the speed at 5 m:

v_{f}^{2} = v_{0}^{2} - 2gh = (15)^{2} - 2*9.81*5 = 126.9

v_{f} = \sqrt{126.9} = 11.3 m/s

E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}*1.5*(11.3)^{2} = 95.8 J

And the mechanical energies:

E_{m} = E_{p} + E_{k} = 73.6 + 95.8 J = 169.4 J

c) At its maximum height:

v_{f}: is the final speed = 0

h = \frac{v_{0}^{2}}{2g} = \frac{(15)^{2}}{2*9.81} = 11.5 m

Now, the potential, kinetic and mechanical energies are:

E_{p} = mgh = 1.5*9.81*11.5 = 169.2 J

E_{k} = \frac{1}{2}mv^{2} = 0

E_{m} = 169.2 J + 0 = 169.2 J

I hope it helps you!    

You might be interested in
The diameter of Earth (to two significant figures) is 7900 miles. Calculate its circumference.
Bess [88]

Answer:

The circumference of the Earth is 24818.58 miles

Explanation:

Analysis conceptual : The formula of the circumference is the following:

L= π*D Formula (1)

Where:

L : is the length of the circumference in miles (mi)

π : is the constant

D : is the diameter of the circumference in miles (mi)

Known data

π = 3.1416

D= 7900 miles:  Diameter of the Earth

Problem development

We apply the formula 1 to calculate the circumference of the Earth  (L):

L= π*7900 miles

L= 24818.58 miles

8 0
4 years ago
In an elastic head-on collision, a 0.60 kg cart moving at 5.0 m/s [W] collides with a 0.80 kg cart moving at 2.0 m/s [E]. The co
labwork [276]

Answer:

The answer is given below

Explanation:

u is the initial velocity, v is the final velocity. Given that:

m_1=0.6kg,u_1=-5m/s(moving \ west),m_2=0.8kg,u_2=2m/s,k=1200N/m

a)

The final velocity of cart 1 after collision is given as:

v_1=(\frac{m_1-m_2}{m_1+m_2})u_1+\frac{2m_2}{m_1+m_2}u_2\\  Substituting:\\v_1=\frac{0.6-0.8}{0.6+0.8} (-5)+\frac{2*0.8}{0.6+0.8}(2)= 5/7+16/7=3\ m/s

The final velocity of cart 2 after collision is given as:

v_2=(\frac{m_2-m_1}{m_1+m_2})u_2+\frac{2m_1}{m_1+m_2}u_1\\  Substituting:\\v_1=\frac{0.8-0.6}{0.6+0.8} (2)+\frac{2*0.6}{0.6+0.8}(-5)= 2/7-30/7=-4\ m/s

b) Using the law of conservation of energy:

\frac{1}{2}m_1u_1+ \frac{1}{2}m_2u_2=\frac{1}{2}m_1v_1+\frac{1}{2}m_2v_2+\frac{1}{2}kx^2\\x=\sqrt{\frac{m_1u_1+m_2u_2-m_1v_1-m_2v_2}{k}}\\ Substituting\ gives:\\x=\sqrt{\frac{0.6*(-5)^2+0.8*2^2-(0.6*3^2)-(0.8*(-4)^2)}{1200}}=\sqrt{0}=0\ cm

7 0
3 years ago
This important factor of survival for the coral reef is
inna [77]

Answer: biotic

Explanation:

6 0
3 years ago
How is sound produced? Name its three<br>characteristics.​
nydimaria [60]

Answer:

1.loudness

2.pitch

3.shrillness

5 0
4 years ago
Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number o
lys-0071 [83]

Answer:

0.99 m

Explanation:

Parameters given:

Amplitude, A = 7.00cm

Wave number, k = 3.00m^-1

Angular Frequency, ω = 2.50Hz

Period = 6.00 s

Phase, ϕ = π/12 rad

Note: All parameters are the same for both waves except the phase.

Wave 1 has a wave function:

y1(x, t) = Asin(kx - ωt)

y1(x, t) = 7sin(3x - 2.5t)

Wave 2 has a wave function:

y2(x, t) = Asin(kx - ωt + ϕ)

y2(x, t) = 7sin(3x - 2.5t + π/12)

π is in radians.

When Superposition occurs, the new wave is represented by:

y(x, t) = 7sin(3x - 2.5t) + 7sin(3x - 2.5t + π/12)

y(x, t) = 7[sin(3x - 2.5t) + sin(3x - 2.5t + π/12)]

Using trigonometric function:

sin(a) + sin(b) = 2cos[(a - b)/2]sin[(a + b)/2]

Where a = 3x - 2.5t, b = 3x - 2.5t + π/12

We have that:

y(x, t) = (2*7)[cos(π/24)sin(3x - 2.5t + π/24)]

Therefore, when x = 0.53cm and t = 2s,

y(x, t) = (2*7)[cos(π/24)sin{(3*0.53) - (2.5*2)+ π/24}]

y(x, t) = 14 * 0.9914 * 0.0713

y(x, t) = 0.99 m

The height of the resultant wave is 0.99cm

5 0
3 years ago
Other questions:
  • Some magnets have just one pole <br> Truth or false ?
    8·2 answers
  • Will it take longer for a train or a car traveling at 100 mi/hr to stop
    13·2 answers
  • A 72-tooth gear is connected to a 12-tooth gear. If the large gear makes one complete turn, how many turns
    8·1 answer
  • A red car with a mass of 3.0 kg traveling at 8 m/s collided with a blue car with a mass of 2.0 kg, which is at rest. The velocit
    6·1 answer
  • PLEASE HELP ME WITH THIS ONE QUESTION
    14·1 answer
  • Which of the view will show you a view<br>to the<br>very<br>Similar<br>Print View?​
    9·1 answer
  • What causes satellites to remain in orbit above Earth?
    9·1 answer
  • How to live a life like scientists​
    12·2 answers
  • 44. A mediados de la década de 1960, la McGill University lanzó sensores metereológicos de gran altitud al dispararlos desde un
    13·1 answer
  • Consider a river flowing toward a lake at an average velocity of 3 m/s at a rate of 510 m3/s at a location 90 m above the lake s
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!