First solve the potential energy of the biker. using the fomula:
PE = mgh
where m is the mass of the object
g is the acceleration due to gravity ( 9.81 m/s2)
h is the height
PE = 96 kg ( 1120 m ) ( 9.81 m/s2)
PE = 1054771.2 J
then power = Work / time
P = 1054771.2 J / ( 120 min ) ( 60 s / 1 min)
P = 146.5 W
Answer:
Part a)
E = 0
Part b)

Part c)
Electric field inside the conductor is again zero

Part d)

Explanation:
Part a)
conducting sphere is of radius
R = 2 cm
so electric field inside any conductor is always zero
So electric field at r = 1 cm
E = 0
Part b)
Now at r = 3 cm
By Gauss law



Part c)
Again when we use r = 4.50 cm
then we will have
Electric field inside the conductor is again zero

Part d)
Now at r = 7 cm
again by Gauss law



The centripetal force (of gravity) on a satellite in orbit is an
unbalanced force (because there's no equal force pulling
the satellite away from Earth), changes the direction of the
satellite (into a closed orbit instead of a straight line), and
always acts toward the center of whatever curve the satellite
happens to be on at the moment.
Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1