Answer:
The statement that best describes insulators is <u><em>"Electrons within their atoms are strongly held by the nuclei"</em></u>
Explanation:
Atoms are constituted by a nucleus with positive charge (protons and neutrons), around which negative charges (electrons) revolve.
Substances that have a huge amount of "free electrons" that can move through the material are called conductors. This is due to the low resistance to the movement of the load or electric current.
Materials that do not conduct electricity are called insulators. In this case the electrons are strongly bound to the nucleus and cannot move freely. In this way a great resistance to the flow of electric current is offered.
Finally, semiconductors are the materials that can have electrical properties of conductors or insulators.
So<u><em> the statement that best describes insulators is "Electrons within their atoms are strongly held by the nuclei"</em></u>
Clarify what you mean by ratios?
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
The potential difference between points a and b is zero.
<h3>Total emf of the series circuit</h3>
The total emf in the circuit is the sum of all the emf in the circuit.
emf(total) = 1.5 + 1.5 = 3.0 V
<h3>Potential difference</h3>
The potential difference between two points, a and b is calculated as follows;
V(ab) = Va - Vb
V(ab) = 1.5 - 1.5
V(ab) = 0
Thus, the potential difference between points a and b is zero.
Learn more about potential difference here: brainly.com/question/3406867
Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.

Differentiate with respect to t on both the sides, we get

For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.