Answer:
y = (x-0)^2 + (-5) ⇒ y = x^2 - 5
Step-by-step explanation:
The general vertex form of the parabola y = a(x - h)² + k
Where (h,k) is the coordinates of the vertex.
As shown at the graph the vertex of the parabola is the point (0, -5)
So,
y = a(x-0) + (-5)
y = ax^2 - 5
To find substitute with another point from the graph like (1,-4)
So, at x = 1 ⇒ y = -4
-4 = a * 1^2 - 5
a = -4 + 5 = 1
<u>So, the equation of the given parabola is ⇒ y = x^2 - 5</u>
Answer:
D. The checking account is overdrawn by $15.
Step-by-step explanation:
Since the balance on a checking account represents the remaining money left in that checking account, having a negative value for that would mean an overdrawing of money, or drawing more money than is in that account in the first place.
Therefore, the answer would be that the checking account is overdrawn by $15.
Hope this helped!
Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
To compare these two values, we need them to be in the same form.
To convert 20% into a decimal, we divide 20/100, or 0.20.
When comparing decimals, we know that 0.2 > 0.02.
Therefore, 20% > 0.02. (20% is greater than 0.02)
2(3)(2) + 2(4)(3) + 2(4)(2)
2(6) + 2(12) + 2(8)
12 + 24 + 16
52
Hope this helps!