A mole of an element refers to 6.02e23 atoms so they would have the same amount of atoms
Answer:
<h2>isotope is a variants of a particular chemical element which differ in neutron number, and consequently in nucleon number.All isotopes of a given element have the same number of protons but different number of neutrons in each atom.</h2>
<h2>The 2 important physical properties of isotope is</h2>
<h2>1.<u>M</u><u>e</u><u>l</u><u>t</u><u>i</u><u>n</u><u>g</u><u> </u><u>Points</u></h2><h2>
2.<u>B</u><u>o</u><u>i</u><u>l</u><u>i</u><u>n</u><u>g</u><u> </u><u>Points</u></h2>
Addition of chlorine to water gives both hydrochloric acid (HCl) and hypochlorous acid (HClO)
What are Transition metal oxides ?
Transition metal oxides (TMOs) are another class of nanomaterials, frequently used as anode in alkaline batteries due to their distinctive properties such as abundant active sites, short diffusion pathways, low preparation cost, high theoretical capacity and distinct reaction mechanism.
Cl2 + H2O ⇌ HClO + HCl
Cl2 + 4 OH− ⇌ 2 ClO− + 2 H2O + 2 e−
Cl2 + 2 e− ⇌ 2 Cl−
The acid can also be prepared by dissolving dichlorine monoxide in water; under standard aqueous conditions, anhydrous hypochlorous acid is currently impossible to prepare due to the readily reversible equilibrium between it and its anhydride.
2 HClO ⇌ Cl2O + H2O K (at 0 °C) = 3.55×10−3 dm3 mol−1
The presence of light or transition metal oxides of copper, nickel, or cobalt accelerates the exothermic decomposition into hydrochloric acid and oxygen
2 Cl2 + 2 H2O → 4 HCl + O2
To learn more about exothermic decomposition click on the link below:
brainly.com/question/20089404
#SPJ4
Answer:
loses, gains
Explanation:
In the ionic compound aluminum selenide, each atom of aluminum will lose electrons while each atom of selenium will gain the electrons.
An ionic compound is an interatomic bond formed between a metal and non-metal. The metal is less electronegative compared to the non-metal. In this case, the metal will lose electrons to become positively charged whereas the non-metal, selenium will gain the electron to become negatively charged.
The electrostatic attraction between these oppositely charged ions leads to the formation of the ionic bond.