Answer: Yes the absorb in the visible range.
Explanation:
The relationship between wavelength and energy of the wave follows the equation:
where,
= energy of the wave = 182 kJ/mol = 182000 J/mol
N = avogadro's number =
h = plank constant =
c = speed of light =
= wavelength of the wave = ?
Putting all the values:

The wavelength range for visible rays is 400 nm to 750 nm, thus the complex absorb in the visible range.
Answer: First, here is the balanced reaction: 2C4H10 + 13O2 ===> 8CO2 + 10H2O.
This says for every mole of butane burned 4 moles of CO2 are produced, in other words a 2:1 ratio.
Next, let's determine how many moles of butane are burned. This is obtained by
5.50 g / 58.1 g/mole = 0.0947 moles butane. As CO2 is produced in a 2:1 ratio, the # moles of CO2 produced is 2 x 0.0947 = 0.1894 moles CO2.
Now we need to figure out the volume. This depends on the temperature and pressure of the CO2 which is not given, so we will assume standard conditions: 273 K and 1 atmosphere.
We now use the ideal gas law PV = nRT, or V =nRT/P, where n is the # of moles of CO2, T the absolute temperature, R the gas constant (0.082 L-atm/mole degree), and P the pressure in atmospheres ( 1 atm).
V = 0.1894 x 0.082 x 273.0 / 1 = 4.24 Liters.
Explanation:
Answer:
The appropriate option will be Option A (unequal sharing of electrons in a covalent bond).
Explanation:
- A polar bond seems to be a covalent bond amongst two or even more atoms where there is an uneven distribution of the electrons surrounding the connection.
- This induces a small electrical magnetic dipole in the molecules whereby the end becomes generally favorable and another is mildly controversial.
The other choices aren't relevant to the situation presented. The answer above would be appropriate.
Explanation:
From first source, kinetic energy (
) ejected is 1 eV and wavelength of light is
.
From second source, kinetic energy (
) ejected is 4 eV and wavelength of light is
.
Relation between work function, wavelength, and kinetic energy is as follows.
K.E =
where, h = Plank's constant =
J.s
c = speed of light =
m/s
Also, it is known that 1 eV =
J
Therefore, substituting the values in the above formula as follows.
=
1 eV =
........... (1)
=
........... (2)
Now, divide equation (2) by 2. Therefore, it will become
......... (3)
Now, subtract equation (3) from equation (1), we get the following.

= 
= 2 eV
Thus, we can conclude that work function of the metal is 2 eV.
Answer:
0.56 M
Explanation:
Step 1: Given data
- Rate constant (k): 0.035 s⁻¹
- Initial concentration of the reactant ([A]₀): 1.5 M
Step 2: Calculate the amount of reactant ([A]) after 28 seconds
For a first-order kinetics, we will use the following expression.
ln [A] = ln [A]₀ - k × t
ln [A] = ln 1.5 - 0.035 s⁻¹ × 28 s
[A] = 0.56 M