Answer:
60 moles of NaF
Explanation:
The balanced equation for the reaction is given below:
Al(NO3)3 + 3NaF —> 3NaNO3 + AlF3
From the balanced equation above,
3 moles of NaF reacted to produce 1 mole of AlF3.
Therefore, Xmol of NaF will react to produce 20 moles of AlF3 i.e
Xmol of NaF = 3 x 20
Xmol of NaF = 60 moles
Therefore, 60 moles of NaF are required to produce 20 moles of AlF3.
The answer is; D
While electromagnetic waves travel at an astounding 3.00 x 10^8 m/s and any delay seems imperceptible in short distances, in long distances, the waves take some time to reach the other end. This is why there is usually a small delay when ground communication tries to reach astronauts in space. Also, remember that when a communication is relayed from the earth, it has to reach the destination and then wait for a response back to earth which covers the same distance or longer/shorter if the target is moving.
The distance to the moon is 384,400 km, therefore multiply this by 2 = 768,800 km
768,800,000m/300,000,000m = 2. 56 seconds
Therefore radio waves sent to the moon from earth will have a minimum 2.5 seconds delay not considering the processing time of this communication by the destination before sending feedback. ‘Over to you’ signals end of a message by the messenger hence allowing the other messenger on the other to respond.
<span>0.72 mL of solution will have 180 mg of amoxicillin.
For this problem, you need to calculate the equivalent ratio of volume as to the ratio of amoxicillin. So
180/500 = X/2.0
Multiply both sides by 2
2 * 180/500 = X
360/500 = X
18/25 = X
0.72 = X
So you need 0.72 mL of solution to get 180 mg of the drug.</span>
Answer: it is part of newtons second law. so the object to your question would accelerate
Explanation: newtons second law
Soft light (answer) is the filament between (2700k-3000k).
The higher the kelvin number the whiter the light.
3500k-4100k is bright white/cool white
5000k-6500k is daylight
\and those are the three primary colors of color temperature