Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
Answer:
HCN < HOCl < HF
Explanation:
The larger the Kₐ value, the stronger the acid.
6.2 × 10⁻¹⁰ < 4.0 × 10⁻⁸ < 6.3 × 10⁻⁴
HCN < HOCl < HF
weakest stronger strongest
Answer:
The correct answer is - Orange light reflected from the t-shirt enters human eyes.
Explanation:
Human eyes and brain are altogether able to detect the color of the object by translating the light which is reflected by the object and transmitted by the light receptors in the eyes ad brain translate light to color.
The objects are able to absorb some colors and reflect others on the basis of their wavelength, The reflected colors are detected by our eyes and brain and objects appear to be a particular color. like here, the orange color is reflected by the t-shirt and enters in human eyes.
PV=PV
(602.1 L)(2.77atm) = (110.6 L) (X atm)
1667.817=110.6X
15.07971971 atm = X
Rounds to 15.1 (sig figs so much fun)
Answer:
2.1mol/L
Explanation:
Number of moles = 0.21 moles
Volume = 0.1L
Molarity of a substance is the number of moles of solute dissolved in a volume of solvent (L)
Molarity = number of moles / volume of solvent
Molarity = 0.21 / 0.1
Molarity = 2.1mol/L