Answer:
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Explanation:
<em>Give the complete ionic equation for the reaction (if any) that occurs when aqueous solutions of MgSO₃ and HI are mixed.</em>
When MgSO₃ reacts with HI they experience a double displacement reaction, in which the cations and anions of each compound are exchanged, forming H₂SO₃ and MgI₂. At the same time, H₂SO₃ tends to decompose to H₂O and SO₂. The complete molecular equation is:
MgSO₃(aq) + 2 HI(aq) ⇄ MgI₂(aq) + H₂O(l) + SO₂(g)
In the complete ionic equation, species with ionic bonds dissociate into ions.
Mg²⁺(aq) + SO₃²⁻(aq) + 2 H⁺(aq) + 2 I⁻(aq) ⇄ Mg²⁺(aq) + 2I⁻(aq) + H₂O(l) + SO₂(g)
Answer:
- <u>Option b. Atom P has an estimated Zeff of 7 and is therefore to the right of Atom Q, which has a Zeff of 6.</u>
Explanation:
Please, find attached the figures of both atom Q and atom P corresponding to this question.
The <u>features of atom Q are</u>:
- Each <em>black sphere</em> represents an electron
- In total this atom has 8 electrons: 2 in the inner shell and 6 in the outermost shell.
- Since it is assumed that the atom is neutral, it has 8 protons: one positive charge of a proton balances one negative charge of an electron. Thus, the atomic number of this atom is 8.
- Since only two shells are ocuppied, you can assert that the atom belongs to the period 2 (which is confirmed looking into a periodic table with the atomic number 8).
- <em>Zeff </em>is the effective nuclear charge of the atom. It accounts for the net positive charge the valence electrons experience. And may, in a very roughly way, be estimated as the number of protons less the number of electrons in the inner shells. Thus, for this atom, an estimated Z eff = 8 - 2 = 6.
The <u>features of atom P</u> are:
- Again, each black sphere represents an electron
- In total this atom has 9 electrons: 2 in the inner shell and 7 in the outermost shell.
- Since it is assumed that the atom is neutral, it has 9 protons.
- The atomic number of this atom is 9.
- Using the same reasoning used for atom Q, this atom is also in the period 2.
- Estimated Z eff = 9 - 2 = 7.
Then, since atom P has a greater Z eff than atom Q (an estimated Zeff of 7 for atom P against an estimated Z eff of 6 for atom Q), and both atoms are in the same period, you can affirm that <em>atom P</em> has a greater atomic number and<em> is therefore to the right of atom Q</em>.
Because the alkali metals are the group 1 metals, they have only 1 valence electron that they want to lose, and the halogens are the group 17 nonmetals, they want to gain 1 valence electron to become stable.
Answer:
0.924 g
Explanation:
The following data were obtained from the question:
Volume of CO2 at RTP = 0.50 dm³
Mass of CO2 =?
Next, we shall determine the number of mole of CO2 that occupied 0.50 dm³ at RTP (room temperature and pressure). This can be obtained as follow:
1 mole of gas = 24 dm³ at RTP
Thus,
1 mole of CO2 occupies 24 dm³ at RTP.
Therefore, Xmol of CO2 will occupy 0.50 dm³ at RTP i.e
Xmol of CO2 = 0.5 /24
Xmol of CO2 = 0.021 mole
Thus, 0.021 mole of CO2 occupied 0.5 dm³ at RTP.
Finally, we shall determine the mass of CO2 as follow:
Mole of CO2 = 0.021 mole
Molar mass of CO2 = 12 + (2×16) = 13 + 32 = 44 g/mol
Mass of CO2 =?
Mole = mass /Molar mass
0.021 = mass of CO2 /44
Cross multiply
Mass of CO2 = 0.021 × 44
Mass of CO2 = 0.924 g.
The answer is D, species!
Hope this helps!