The kind of reaction that occurs when you mix aqueous solutions of barium sulfide and sulfuric acid is a precipitation reaction.
<h3>Further Explanation</h3>
- The chemical reaction between Ba(OH)2(aq) and H2SO4(aq) is given by;
Ba(OH)₂(aq) + H₂SO4(aq) --> BaSO₄(aq) + 2H₂O(l)
- This is a type of precipitation reaction, where a precipitate is formed after the reaction, that is Barium sulfate.
<h3>Other types of reaction</h3><h3>Neutralization reactions </h3>
- These are reactions that involve reacting acids and bases or alkali to form salt and water as the only products.
- For example a reaction between sodium hydroxide and sulfuric acid.
NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + H₂O(l)
<h3>Displacement reactions</h3>
- These are reactions in which a more reactive atom or ion displaces a less reactive ion from its salt.
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
<h3>Redox reactions </h3>
- These are reactions that involve both reduction and oxidation occuring simultaneously durin a chemical reaction.
- For example,
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
- Magnesium atom undergoes oxidation while copper ions undergoes reduction.
<h3>Decomposition reactions</h3>
- These are type of reactions that involves breakdown of a compound into its constituents elements.
- For example decomposition of lead nitrate.
Pb(NO3)2(S) → PbO(s) + O2(g) + NO2(g)
Keywords: Precipitation
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Chemical reactions
Sub-topic: Precipitation reactions
Answer:
No they form nitrogen oxide which can be poisonous to some species but depending on the amount of nitrogen it can be harmful to everything living. Such as if you put it with a plant that had low nitrogen levels then there would be no carbon dioxide to filter.
Explanation:
Answer:
isomers
Explanation:
Compounds that have the same molecular formula but different chemical structures are called isomers. Remember isomerism is a property between a pair (or more) of molecules, i.e. a molecule is an isomer of another molecule.
actual yield of ethanol = 305.0g
molar mass of sucrose = 342g
molar mass of ethanol =46g
mass of sucrose = 665g
mole of sucrose = mass / molar mass = 665/342
mole of sucrose =1.9 mole
sucrose : C2H5OH
1 : 4
1.9 : 1.9x4 =7.6 mole of C2H5OH are formed
mass (therotical yield ) of C2H5OH= mole x mass
mass (therotical yield ) of C2H5OH= 7.6 x 46 = 349.6g
percent yields of ethanol = actual /therotical x100
=305/349.6x100 = 87.24 %