Answer:
Explanation:
Given
Initial reading on scale =40 N
So, we can conclude that weight of the sack is 40 N
After this a 10 N force is applied upward on the sack such that the net force becomes (40-10) N downward (because downward force is more)
This net downward force is the resultant of earth graviational pull and the applied upward force.
So, this downward force acts on the machine which inturn applies an upaward force of same magnitude called Normal reaction.
This situation can be diagramatically represented by figure given below
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m