Answer:
The maximum change in flux is 
The average induced emf 
Explanation:
From the question we are told that
The speed of the technician is 
The distance from the scanner is 
The initial magnetic field is 
The final magnetic field is 
The diameter of the loop is 
The area of the loop is mathematically represented as
![A = \pi [\frac{D}{2} ]^2](https://tex.z-dn.net/?f=A%20%20%3D%20%20%5Cpi%20%5B%5Cfrac%7BD%7D%7B2%7D%20%5D%5E2)


At maximum the change in magnetic field is mathematically represented as

=> 

The average induced emf is mathematically represented as



<span>In the article “Who Shaped our Behaviors? Peers or Parents?”, Judy Rich Harris suggests that C. peers are the most influential in forming children's personalities.
When a child is young, it is very impressionable and will follow other people's influence easily. Usually, that influence comes from other kids who can do something, and then your child will want to do the same thing. So peers are crucial when forming a personality at such a young age.</span>
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J
1.53 m/s toward the beach
Explanation:
The magnitude of the velocity of the runner is given by:

where
d is the displacement of the runner
t is the time taken
In this case, d=110 m and t=72 s, so the velocity of the runner is

Velocity is a vector, so it consists of both magnitude and direction: we already calculate the magnitude, while the direction is given by the problem, toward the beach.