Answer:
F = 51.3°
Explanation:
The component of weight parallel to the inclined plane must be responsible for the rolling back motion of the car. Hence, the force required to be applied by the child must also be equal to that component of weight:

where,
W = Weight of Wagon = 150 N
θ = Angle of Inclinition = 20°
Therefore,

<u>F = 51.3°</u>
Answer:
Should be moving away
Explanation:
Red is a longer wavelength therefore further away. Wavelength is stretched out more and on the red end. I hope this is right. I decided to research and answer since you didn’t have other answers. Are you taking this on edg? I hope I helped!
A free-falling object is an object moving under the effect of gravitational forces alone
The correct option to select for the True or False question is False
The reason the above selected option is correct is as follows:
According to Newton's second law of motion, we have;
Force = Mass × Acceleration
The force of gravity is 
Where;

m = The mass of the object
∴ The force acting on an object in free fall,
= m × g
Therefore the acceleration of an object in free fall is the constant acceleration due to gravity, and it therefore, does not change with time
The correct option for the question, acceleration of a free-falling object in a frictionless environment increases as a function of time is <u>False</u>
<u></u>
Learn more about object in free fall here:
brainly.com/question/13712424
brainly.com/question/11698474
Answer:
F' = (3/2)F
Explanation:
the formula for the electric field strength is given as follows:
E = F/q
where,
E = Electric Field Strength
F = Force due to the electric field
q = magnitude of charge experiencing the force
Therefore,
F = E q ---------------- equation (1)
Now, if we half the electric field strength and make the magnitude of charge triple its initial value. Then the force will become:
F' = (E/2)(3 q)
F' = (3/2)(E q)
using equation (1)
<u>F' = (3/2)F</u>