The period of the pendulum is the reciprocal of the frequency:

The period of the pendulum is given by

where L is the length of the pendulum, and g the acceleration of gravity. By re-arranging the formula and using the value of T we found before, we can calculate the length of the pendulum L:
The answer should be d because they are constantly rotating
Explanation:
The volume of a simple compressible system is not fixed. At a state of equilibrium, there should be uniformity in the entire system.
From the question we have here, these are the correct options:
1. It cannot be a mixture of different substances (e.g. oxygen and nitrogent)
2. It can be composed of any phases of a substance: solid, liquid, and/or gas
3. It's state is specified if given two independent, intensive thermodynamic properties.
Answer:
The answer is below
Explanation:
The length of the rope is equal to the radius of the circle formed by the complete rotation of the rope. Therefore the radius = 1.50 m.
a) The distance covered by the rope when completing one rotation is the same as the perimeter of the circle. Hence:
Distance covered in one rotation = 2π * radius = 2π * 1.5 = 3π meters
The velocity of the ball = Distance / time = 3π meters / 3.4 seconds = 2.77 m/s
b) The initial velocity (u) is 0 m/s, the final velocity is 2.77 m/s during time (t) = 3.4 s. Hence acceleration (a):
v = u + at
2.77 = 3.4a
a = 0.82 m/s²
c) Force on ball = mass * acceleration = 4 * 0.82 = 3.28 N
Force of the kick or the balls velocity