1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
12

As a pendulum swings from its highest to its lowest position along an arc, what happens to its kinetic energy and potential ener

gy?
Physics
1 answer:
Alona [7]3 years ago
3 0

At its highest position along the arc, the pendulum is at its lowest point of kinetic energy but its highest point of potential energy. As it swings to the lowest position, the potential energy is converted into kinetic energy, thus decreasing potential energy and increasing kinetic energy.

Hope this helped!

You might be interested in
What is the difference between circumstances and circumference??<br><br>pls ans asap​
dimulka [17.4K]

Answer:

understand

Explanation:

hiiiiiiiiiiiiiiiiiiii

6 0
3 years ago
the amplitude of the wave is which of the following A. Resonance B. Reflection C. Energy D. Magnitude
OLga [1]
D.Magnitude is the answer
8 0
3 years ago
A ball of mass M is suspended by a thin string (of negligible mass) from the ceiling of an elevator.uploaded image
lilavasa [31]

Answer:

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.  T > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor. T > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor. T < mg

(d) The elevator is traveling downward at a constant velocity. T = mg

(e) The elevator is traveling downward and its downward velocity is increasing. T < mg

(f) The elevator is stationary and remains at rest. T = mg

Explanation:

To answer this question, consider all the forces acting on the elevator.

The mass of the ball acting downwards due to gravity = mg

The tension on the string depends on upward or downwards force on the ball. T = m(a+g)

where a is acceleration and increase in velocity causes increase in acceleration, and vice versa. (a = v/t)

(a) The elevator is traveling upward and its upward velocity is decreasing as it nears a stop at a higher floor.

If the upward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a+g) > mg

(b) The elevator is traveling upward and its upward velocity is increasing as it begins its journey towards a higher floor.

If the upward velocity is increasing, its acceleration is also increasing.

Then, T = m(a+g) > mg

(c) The elevator is traveling downward and its downward velocity is decreasing as it nears a stop at a lower floor.

If the downward velocity is decreasing, its acceleration is also decreasing, and acceleration is not equal to Zero

T = m(a-g) < mg

(d) The elevator is traveling downward at a constant velocity

At constant velocity, acceleration is zero, because acceleration is the rate of change of velocity.

T = m(0+g) = mg

(e) The elevator is traveling downward and its downward velocity is increasing

If the downward velocity is increasing, its acceleration is also increasing

T = m(a-g) < mg

(f) The elevator is stationary and remains at rest.

if the elevator is at rest, its acceleration is zero

T = m(0+g) = mg

6 0
3 years ago
Say that you are in a large room at temperature TC = 300 K. Someone gives you a pot of hot soup at a temperature of TH = 340 K.
DiKsa [7]

Answer:0.061

Explanation:

Given

T_C=300 k

Temperature of soup T_H=340 K

heat capacity of soup c_v=33 J/K

Here Temperature of soup is constantly decreasing

suppose T is the temperature of soup at any  instant

efficiency is given by

\eta =\frac{dW}{Q}=1-\frac{T_C}{T}

dW=Q(1-\frac{T_C}{T})

dW=c_v(1-\frac{T_C}{T})dT

integrating From T_H to T_C

\int dW=\int_{T_C}^{T_H}c_v(1-\frac{T_C}{T})dT

W=\int_{T_C}^{T_H}33\cdot (1-\frac{300}{T})dT

W=c_v\left [ T-T_C\ln T\right ]_{T_H}^{T_C}

W=c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]

Now heat lost by soup is given by

Q=c_v(T_C-T_H)

Fraction of the total heat that is lost by the soup can be turned is given by

=\frac{W}{Q}

=\frac{c_v\left [ \left ( T_C-T_H\right )-T_C\left ( \ln \frac{T_C}{T_H}\right )\right ]}{c_v(T_C-T_H)}

=\frac{T_C-T_H-T_C\ln (\frac{T_C}{T_H})}{T_C-T_H}

=\frac{300-340-300\ln (\frac{300}{340})}{300-340}

=\frac{-40+37.548}{-40}

=0.061

4 0
3 years ago
Why do some scientists think that Irr II galaxies have irregular, distorted shapes?
laila [671]
They believe the distortions happened when two galaxies collided.

Hope This Helps :)
3 0
3 years ago
Other questions:
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • The pressure of a gas remains constant while the temperature, volume, and internal energy of the gas increase by 57.7 Co, 1.24 x
    6·1 answer
  • The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
    14·1 answer
  • Which component is used to measure the current in a circuit? A. switch B. resistor C. ammeter D. voltmeter
    11·1 answer
  • A blank is a determination of an amount of something.
    9·2 answers
  • Strong forces
    6·1 answer
  • An LED operation at 850 nm center wavelength has a spectral width of 45 nm. What is the pulse spreading in ns/km
    6·1 answer
  • A charged particle is moving with speed v perpendicular to a uniform magnetic field. A second identical charged particle is movi
    11·1 answer
  • If the range of a projectile is and 256√3 m in the maximum height reached is 64 m. calculate the angle of projection​
    12·1 answer
  • Write the first law of motion​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!