Answer:
t = 7,8 s
Explanation:
From the instant, the rabbit passes the cat. The cat star running acceleration of 0,5 m/s² .
When the cat arrives at the speed of 3,9 m/s the cat catches the rabbit
Then for the cat arrives at 3,9 m/s nedds
v = vo + a*t vo = 0 then v = a*t
3,9 ( m/s) = 0,5 ( m/s² ) * t
t = 7,8 s
v = 3,9 m/s =
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.
The answer is D because it’s going by the miles
Answer: Physical component- state of physiological arousal triggered by autonomic nervous system
Behavioral component- outward expression of emotion, including facial expression and behavior
Cognitive component- appraisal of the situation determine which emotion we are experiencing and why.
Explanation:
hope that helps :)
Answer:
The average power provided by the tension in the cable pulling the lift is = 714 W
Explanation:
Given data
Mass = 71 kg
Change in height = 123 m
When the lift moves in upward direction then in that case kinetic energy is constant & only potential energy changes.
Change in potential energy Δ PE = m g (
)
Δ PE = 71 × 9.81 × 123
Δ PE = 85670.73 J
Time = 2 min = 120 sec
So average power is given by



Therefore the average power provided by the tension in the cable pulling the lift is = 714 W