Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />
Answer:
<u><em>The correct option is C) the moon takes the same time to rotate and revolve.</em></u>
Explanation:
Scientific experiments have concluded that it takes approximately 23 days for the moon to rotate and also it takes the same duration for the moon to revolve around the Earth. Due to this consistency, the moon appears to be still.
<em>Such synchronization results in the same face of the moon to be directed towards the Earth. Hence, the same craters of the moon will be observed by the scientist every day.</em>
<em></em>
Other options, like option D, is not correct because there will be craters on the other side of the moon too. But as we see the same side of the moon, hence we cannot see the craters present on the other side of the moon.
Answer:
sp
Explanation:
Hybridization is the combination of atomic orbitals to yield equivalent hybrid orbitals of appropriate energy which can participate in bonding.
In every compound there is a central atom. The central atom is usually the least electronegative atom in the molecule. In this case the least electronegative atom in the molecule is carbon.
The bond between carbon and oxygen in CO2 is intermittent between a pure double and a pure triple bond. Hence, carbon is sp hybridized.
Answer:
Explanation:
Molar mass of KF= 39 + 19= 58g/mol
Mass of KF = 109g
Amount = mass/molar mass
Amount = 109/58
Amount = 1.9moles