Answer:
Boil the water and stir in potassium nitrate. If it doesn't all dissolve, you can cook it on the stove or microwave it until the water boils again. Remove the solution from heat, but let it cool slowly for the best crystal formation.
Answer:
b
Explanation:
I used my passion and skill for learning to do a quick google search :P
There are 4 moles of spectator ions that remain in solution.
The equation of the reaction is;
Na2CO3(aq) + Pb(NO3)2(aq) -------> PbCO3(s) + 2NaNO3(aq)
We have to determine the limiting reactant. This is the reactant that yields the least amount of product. Note that the spectator ions are Na^+ and NO3^- that form NaNO3.
For Na2CO3
1 mole of Na2CO3 yields 2 moles of NaNO3
3 moles of Na2CO3 yields 3 × 2/1 = 6 moles of NaNO3
For Pb(NO3)2
1 mole of Pb(NO3)2 yields 2 moles of NaNO3
2 moles of Pb(NO3)2 yields 2 × 2/1 = 4 moles of NaNO3
We can see that Pb(NO3)2 is the limiting reactant.
Since [NaNO3] = [Na^+] = [NO3^-], it follows that there are 4 moles of spectator ions that remain in solution.
Learn more: brainly.com/question/22885959
The Answer is D. Suspending a heavy weight with a strong chain.
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g