If you're looking for the simplified version of the fraction, you have to factor both numerator and denominator.
The numerator is actually already a prime number, so we're good
The denominator factors as ![153 = 3^2\cdot 17](https://tex.z-dn.net/?f=%20153%20%3D%203%5E2%5Ccdot%2017%20)
So, a 3 appears in both numerator and denominator. We can simplify it:
![\cfrac{3}{153} = \cfrac{3}{3^2\cdot 17} = \cfrac{1}{3\cdot 17} = \cfrac{1}{51}](https://tex.z-dn.net/?f=%20%5Ccfrac%7B3%7D%7B153%7D%20%3D%20%5Ccfrac%7B3%7D%7B3%5E2%5Ccdot%2017%7D%20%3D%20%5Ccfrac%7B1%7D%7B3%5Ccdot%2017%7D%20%3D%20%5Ccfrac%7B1%7D%7B51%7D%20)
If you want to compute the approximated value of this fraction, simply plug these values into some calculator to get
![\cfrac{1}{51} \approx 0.0196078431372\ldots](https://tex.z-dn.net/?f=%20%5Ccfrac%7B1%7D%7B51%7D%20%5Capprox%200.0196078431372%5Cldots%20)
Answer: 145
Step-by-step explanation: You just add the angles together so 110+35=145
Answer:
Step-by-step explanation:
1). Geometric mean of a and b = ![\sqrt{a\times b}](https://tex.z-dn.net/?f=%5Csqrt%7Ba%5Ctimes%20b%7D)
Therefore, geometric mean of 2 and 50 = ![\sqrt{2\times 50}](https://tex.z-dn.net/?f=%5Csqrt%7B2%5Ctimes%2050%7D)
= 10
2). By geometric mean theorem,
![\frac{JM}{KM}=\frac{KM}{ML}](https://tex.z-dn.net/?f=%5Cfrac%7BJM%7D%7BKM%7D%3D%5Cfrac%7BKM%7D%7BML%7D)
![\frac{6}{e}=\frac{e}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B6%7D%7Be%7D%3D%5Cfrac%7Be%7D%7B24%7D)
e² = 6 × 24
e = √144
e = 12
Similarly, ![\frac{JL}{KJ}=\frac{KJ}{JM}](https://tex.z-dn.net/?f=%5Cfrac%7BJL%7D%7BKJ%7D%3D%5Cfrac%7BKJ%7D%7BJM%7D)
![\frac{6+24}{d}=\frac{d}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B6%2B24%7D%7Bd%7D%3D%5Cfrac%7Bd%7D%7B6%7D)
d² = 6 × 30
d = √180
d = 6√5
And ![\frac{JL}{KL}=\frac{KL}{ML}](https://tex.z-dn.net/?f=%5Cfrac%7BJL%7D%7BKL%7D%3D%5Cfrac%7BKL%7D%7BML%7D)
![\frac{6+24}{c}=\frac{c}{24}](https://tex.z-dn.net/?f=%5Cfrac%7B6%2B24%7D%7Bc%7D%3D%5Cfrac%7Bc%7D%7B24%7D)
c² = 30 × 24
c = √720
c = 12√5
bearing in mind that the centroid in a triangle cuts each of the three medians in a 2:1 ratio.
since we know that A C = 12, let's split it in a 2:1 ratio then, cleary from the picture the larger is F C, so F C : A F is on a 2:1 ratio.
![\bf A C=A F+F C\qquad \qquad \cfrac{F C}{A F}=\cfrac{2}{1}\qquad \qquad \cfrac{2\cdot \frac{12}{2+1}}{1\cdot \frac{12}{2+1}}\implies \cfrac{2\cdot 4}{1\cdot 4}\implies \cfrac{8}{4}](https://tex.z-dn.net/?f=%5Cbf%20A%20C%3DA%20F%2BF%20C%5Cqquad%20%5Cqquad%20%5Ccfrac%7BF%20C%7D%7BA%20F%7D%3D%5Ccfrac%7B2%7D%7B1%7D%5Cqquad%20%5Cqquad%20%5Ccfrac%7B2%5Ccdot%20%5Cfrac%7B12%7D%7B2%2B1%7D%7D%7B1%5Ccdot%20%5Cfrac%7B12%7D%7B2%2B1%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%204%7D%7B1%5Ccdot%204%7D%5Cimplies%20%5Ccfrac%7B8%7D%7B4%7D)