Hello, 3Coli here!
Here is your answer:
My data supports the hypothesis as supporting evidence. My hypothesis would not have existed if I didn't have evidence. If a hypothesis doesn't match my data, it could be wrong.
Hope this helps! :D
Ask your question below!
A carbon atom has 4 valence electrons
The nervous and the endocrine system are tightly linked together.
The main reason for this linkage is due to the connection of the hypothalamus (nervous system) and the hypophysis (a gland in the endocrine system)
The hypophysis is the ''controller'' of all of the other endocrine glands.
The connection between the hypothalamus and the hypophysis enables the nervous system to control the hormone levels of all of the major endocrine glands in the body.
The hypothalamus releases hormones into the bloodstream that leads to the hypophysis. These hormones induce a release of hypophysis hormones that enter the bloodstream and when they reach the target gland (for example pancreas) these hormones induce the release of the hormones of that gland (in the case of the pancreas, insulin).
The hypothalamus monitors the concentration of hormones in the blood, and a high level of a certain hormone blocks the release of the hypothalamus' hormones. Therefore, a high level of insulin blocks a cascade of hormone release that starts in the hypothalamus that leads to its release in the pancreas.
It is true that it is possible for a population to not evolve for a while.
There is something called the Hardy-Weinberg theorem, which characterizes the distributions of genotype frequencies in populations that are not evolving.
There are 5 Hardy-Weinberg assumptions:
- no mutation
- random mating
- no gene flow
- infinite population size
- and no selection (natural nor forced).
You can see that some of these are kinda extreme and really hard to get, but with approximations, we can work.
For example, instead of an "infinite population size" we have enough with a really large population, such that genetic drift is negligible.
Concluding, yes, it is possible (but really difficult) for a population to not evolve for a while (at least, in nature), as long as the 5 assumptions above are met.
If you want to learn more, you can read:
brainly.com/question/19431143
Answer: c deltas
Explanation: hope this helps