Umm its not a i think... lemme see lol
I believe that the answer is ionic
Answer:
A solution in which no more solute can be dissolved in is referred to as SATURATED. In such a solution, the concentration of solute is called SOLUBILITY . When that concentration is reported in moles per liter, it is more specifically called MOLAR SOLUBILITY. A special equilibrium constant called the SOLUBILITY PRODUCT constant is calculated from the molar concentrations of the aqueous components of the dissolution equation.
Explanation:
The solubility of a solute in a solvent is the maximum amount of solute in moles that will be dissolved in 1dm3 of the solvent at a specified temperature. Once the maximum number or concentration has been reached, the solvent can no longer take in solutes and this point in the reaction, the solution is said to be saturated. That is the composition of the saturated solution is not affected by the presence of excess solute. An unsaturated solution has a lower concentration of solute and can dissolve more solutes if added until it becomes saturated.
Solubility when reported in moles per liter is called molar solubility of the solution and it gives a more accurate measurement of yh solubility of a solution. The solubility product constant is calculated from the molar concentrations of the aqueous components of the dissolution equation. This solubility product constant explains the balance between dissolved ions from the salt and undissolved salt in a dissolution equation.
Answer:
6 oxygen atoms
Explanation:
From the equation,
2Fe(OH)₃ → Fe₂O₃ + 3H₂O
From the reactant (left hand side) we have 2 moles of Fe(OH)₃ having (2 * 3 = 6) atoms of oxygen and decomposed to give Fe₂O₃ which contains 3 atoms of oxygen and 3 moles of water that also contains 3 atoms of oxygen.
Since the number of oxygen participating in the reaction is independent on the product (not a reversible reaction) then the total number of oxygen atoms participating in the reaction is 6
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.