The kinetic molecular theory<span> of gases is stated in the following four </span>principles<span>: The space between gas </span>molecules<span> is much larger than the </span>molecules<span> themselves. Gas </span>molecules<span> are in constant random motion. The average </span>kinetic<span> energy is determined solely by the temperature.
I got this from my notes from my chemistry class last semester
</span>
Mass of PH3= 6.086 g
<h3>Further explanation</h3>
Given
6.0 L of H2
Required
mass of PH3
Solution
Reaction
P4 + 6H2 → 4PH3
Assumed at STP ( 1 mol gas=22.4 L)
Mol of H2 for 6 L :
= 6 : 22.4 L
= 0.268
From the equation, mol PH3 :
= 4/6 x moles H2
= 4/6 x 0.268
= 0.179
Mass PH3 :
= 0.179 x 33,99758 g/mol
= 6.086 g
Answer: 5
Explanation: add up all the electrons and it will amount to 23. Arranging by the old model for electronic configuration, we have : 2, 8, 8, 5
The last number being 5 represent its valence electron
H2O2(I)
C6H6(O)
CO2(I)
C2H6(O)
HNO3(I)