Answer
given,
mass of base ball = 0.14 kg
speed before it made the contact with the ball (V i) = 42 m/s
speed after batter hit the ball(V f) = - 48 m/s
a)
impulse = change in momentum
=
=
= -12.6 Kg m/s
Magnitude of impulse = 12.6 Kg m/s
b)
Force = 
= 
Force = 2520 N
Explanation:
given solution
h=45m v^2=u^2+2gh
g=10m/s^2 v^2=0^2+2×10m/s^2×45m
vi=0 v^2=900m^2/s^2
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
When two surfaces slide against each other, a force called friction makes them stick very slightly together. Smooth surfaces, like ice and glass, are easy to slide over. They create very little friction. Rough surfaces like rock and sand create much more friction, and are easy to grip on to.
hope it helps...!!!