This would be gas, due to it not essentially having a definite volume.
Maybe number 4 could help.
Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum
before the collision must be equal to the final momentum
after the collision:
(1)
Being:


Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding
:
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since 
Substituting (8) in (6):
(9)
(10)
Finally:

Answer:
8 m/s to the left.
Explanation:
Applying,
V = d/t...................... Equation 1
Where V = Velocity of the car, d = distance, t = time
From the question,
Given: d = 24 meters, t = 3 seconds
Substitute these values into equation 1
V = 24/3
V = 8 m/s to the left.
Hence the velocity of the car is 8 m/s to the left.
Answer:
answer is 2 option because more force is applied