Answer:
mass of the second ball is 0.379m
Explanation:
Given;
mass of first ball = m
let initial velocity of first ball = u₁
let final velocity of first ball = v₁ = 0.45u₁
let the mass of the second ball = m₂
initial velocity of the second ball, u₂ = 0
let the final velocity of the second ball = v₂
Apply the principle of conservation of linear momentum;
mu₁ + m₂u₂ = mv₁ + m₂v₂
mu₁ + 0 = 0.45u₁m + m₂v₂
mu₁ = 0.45u₁m + m₂v₂ -------- equation (i)
Velocity for elastic collision in one dimension;
u₁ + v₁ = u₂ + v₂
u₁ + 0.45u₁ = 0 + v₂
1.45u₁ = v₂ (final velocity of the second ball)
Substitute in v₂ into equation (i)
mu₁ = 0.45u₁m + m₂(1.45u₁)
mu₁ = 0.45u₁m + 1.45m₂u₁
mu₁ - 0.45u₁m = 1.45m₂u₁
0.55mu₁ = 1.45m₂u₁
divide both sides by u₁
0.55m = 1.45m₂
m₂ = 0.55m / 1.45
m₂ = 0.379m
Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)
Answer:
<em>The greatest pressure is 2178 Pa</em>
Explanation:
<u>Pressure</u>
It's the force applied perpendicular to the surface of an object per unit area over which the force is distributed.
If F is the force applied and A is the surface area, the pressure is calculated as:

The brick has dimensions of 25 cm by 9 cm by 5 cm. There are three possible areas of contact:



The brick has a mass of m=1000 g = 1 Kg and exerts a force equal to its weight when placed on a flat surface, thus:
F = m.g = 1 * 9.8 = 9.8 N
The greatest possible pressure will occur when the area is the least possible
, since the pressure and the area are inversely proportional, thus:


The greatest pressure is 2178 Pa
The most likely answer to this problem would be (1) more mass and more inertia.
A 15-kilogram cart at rest and a 5-kilogram box would make up a 20-kilogram cart and box that is at rest on a horizontal surface. The mass changed into something more, of course, as a result of combining the two object into one and by combining the two objects' mass, the inertia that it previously possessed as a cart by itself was increased when the inertia of the box was also combined to the cart.
Answer:
0.7757 rev/s
Explanation:
d = Diameter of the tornado = 53 m
r = Radius of the tornado = 53/2 = 26.5 m
v = Velocity of wind = 465 km/h
Converting velocity to m/s

Angular velocity


∴ Angular velocity is 0.7757 rev/s
The answer to the correct number of significant figures is 6.774.
<h3>What is quotient?</h3>
When a number(big) divided smaller number, the answer obtained greater than zero is called a quotient.
Divide 143.6 ÷ 21.2
143.6/21.2 = 1436/212
=6.77358
The quotient is rounded to three significant figures after decimal
143.6 ÷ 21.2 = 6.774
Thus, the answer to the correct number of significant figures is 6.774
Learn more about quotient
brainly.com/question/27796160
#SPJ1