1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
3 years ago
12

17.003 - 0.374 please show work

Mathematics
1 answer:
asambeis [7]3 years ago
7 0

Answer:

16.629

Step-by-step explanation:

Start by setting up the numbers like the first picture. The borrow. To borrow we have to go the whole way over to the 7 since you can't borrow from 0. So the 7 becomes a 6 and the 0 becomes  10. Then the 10 becomes a 9 and the 0 becomes a 10. Then the 10 becomes a 9 and the 3 becomes a 13. Then subtract. Just bring the decimal point down.

You might be interested in
Rewrite x5/6 divided by x1/6 in simplest radical form
lisabon 2012 [21]
5/6 and 1/6 are exponents to X. The X’s are divided by each other. does that make sense?
5 0
3 years ago
Greatest common factor of 76 and 675
babymother [125]
The greatest common factor of 76 and 675 is 1
5 0
2 years ago
Find the maximum volume of a rectangular box that is inscribed in a sphere of radius r.
zvonat [6]

Answer:

The maximum volume of a box inscribed in a sphere of radius r is a cube with volume \frac{8r^3}{3\sqrt{3}}.

Step-by-step explanation:

This is an optimization problem; that means that given the constraints on the problem, the answer must be found without assuming any shape of the box. That feat is made through the power of derivatives, in which all possible shapes are analyzed in its equation and the biggest -or smallest, given the case- answer is obtained. Now, 'common sense' tells us that the shape that can contain more volume is a symmetrical one, that is, a cube. In this case common sense is correct, and the assumption can save lots of calculations, however, mathematics has also shown us that sometimes 'common sense' fails us and the answer can be quite unintuitive. Therefore, it is best not to assume any shape, and that's how it will be solved here.

The first step of solving a mathematics problem (after understanding the problem, of course) is to write down the known information and variables, and make a picture if possible.

The equation of a sphere of radius r is x^2 + y^2 + z^2=r^2. Where x, y and z are the distances from the center of the sphere to any of its points in the border. Notice that this is the three-dimensional version of Pythagoras' theorem, and it means that a sphere is the collection of coordinates in which the equation holds for a given radius, and that you can treat this spherical problem in cartesian coordinates.

A box that touches its corners with the sphere with arbitrary side lenghts is drawn, and the distances from the center of the sphere -which is also the center of the box- to each cartesian axis are named x, y and z; then, the complete sides of the box are measured  2x,  2y and 2z. The volume V of any rectangular box is given by the product of its sides, that is, V=2x\cdot 2y\cdot 2z=8xyz.

Those are the two equations that bound the problem. The idea is to optimize V in terms of r, therefore the radius of the sphere must be introduced into the equation of the volumen of the box so that both variables are correlated. From the equation of the sphere one of the variables is isolated: z^2=r^2-x^2 - y^2\quad \Rightarrow z= \sqrt{r^2-x^2 - y^2}, so it can be replaced into the other: V=8xy\sqrt{r^2-x^2 - y^2}.

But there are still two coordinate variables that are not fixed and cannot be replaced or assumed. This is the point in which optimization kicks in through derivatives. In this case, we have a cube in which every cartesian coordinate is independent from each other, so a partial derivative is applied to each coordinate independently, and then the answer from both coordiantes is merged into a single equation and it will hopefully solve the problem.

The x coordinate is treated first: \frac{\partial V}{\partial x} =\frac{\partial 8xy\sqrt{r^2-x^2 - y^2}}{\partial x}, in a partial derivative the other variable(s) is(are) treated as constant(s), therefore the product rule is applied: \frac{\partial V}{\partial x} = 8y\sqrt{r^2-x^2 - y^2}  + 8xy \frac{(r^2-x^2 - y^2)^{-1/2}}{2} (-2x) (careful with the chain rule) and now the expression is reorganized so that a common denominator is found \frac{\partial V)}{\partial x} = \frac{8y(r^2-x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}  - \frac{8x^2y }{\sqrt{r^2-x^2 - y^2}} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}.

Since it cannot be simplified any further it is left like that and it is proceed to optimize the other variable, the coordinate y. The process is symmetrical due to the equivalence of both terms in the volume equation. Thus, \frac{\partial V}{\partial y} = \frac{8x(r^2-x^2 - 2y^2)}{\sqrt{r^2-x^2 - y^2}}.

The final step is to set both partial derivatives equal to zero, and that represents the value for x and y which sets the volume V to its maximum possible value.

\frac{\partial V}{\partial x} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}} =0 \quad\Rightarrow r^2-2x^2 - y^2=0 so that the non-trivial answer is selected, then r^2=2x^2+ y^2. Similarly, from the other variable it is obtained that r^2=x^2+2 y^2. The last equation is multiplied by two and then it is substracted from the first, r^2=3 y^2\therefore y=\frac{r}{\sqrt{3}}. Similarly, x=\frac{r}{\sqrt{3}}.

Steps must be retraced to the volume equation V=8xy\sqrt{r^2-x^2 - y^2}=8\frac{r}{\sqrt{3}}\frac{r}{\sqrt{3}}\sqrt{r^2-\left(\frac{r}{\sqrt{3}}\right)^2 - \left(\frac{r}{\sqrt{3}}\right)^2}=8\frac{r^2}{3}\sqrt{r^2-\frac{r^2}{3} - \frac{r^2}{3}} =8\frac{r^2}{3}\sqrt{\frac{r^2}{3}}=8\frac{r^3}{3\sqrt{3}}.

6 0
3 years ago
What is the answer? #16 . thanks
rjkz [21]
If I got it correctly, the question is what is  24x^2y^6-16x^6y^2+4xy^2 divided by 4xy^2 and the answer is 6xy^4-4x^5+1.

6 0
3 years ago
Which transformation will map figure Q onto figure Q’
Ilya [14]

Answer:

11 units i think

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Use the figure shown to find the missing lengths of the triangle.
    14·1 answer
  • Someone help me with this one
    5·1 answer
  • Find the length of the missing side.
    6·1 answer
  • I NEED HELP REALLY FAST!!!
    11·1 answer
  • Write a statement that describes pi as a ratio
    7·2 answers
  • Btw there is 2 more options. number 3 is, (step3) and number 4 is, Raul did not make a mistake.
    13·2 answers
  • Help me with my homework please
    11·1 answer
  • The profit when selling 'x' pairs of shoes is P(x)=-4x^2+32x-39. How many pairs of shoes should be sold in order to maximize the
    6·1 answer
  • (ii) n is an integer and 6n +5 <20
    12·1 answer
  • If 2x = 3y + 11 and 2^x = 2^4(y+1), determine the value of x+y
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!