Answer:
The answer is 1.06g.
Explanation:
Analysis of question:
1. Identify the information in the question given.
- volume of HCl is 2 dm3
- pH of HCl is 2.0
2. What the question want?
- mass of Na2CO3 is ?(unknown)
- 3. Do calculation.
- 1st-Write a balanced chemical equation:
Na2CO3 + 2HCl (arrow) 2NaCl + H20 + CO2
- 2nd-Determine the molarity of HCl with the value of 2.0.
pH= -log[H+]
2.0= -log[H+]
log[H+]= -2.0
[H+]= 10 to the power of negative 2(10-2)
=0.01 mol dm-3
molarity of HCl is 0.01 mol dm-3
- 3rd-Find the number of moles of HCl
n=MV
=0.01 mol dm-3 × 2 dm3
=0.02 mol of HCl
- 4th-Find the second mol of it.
Based on the chemical equation,
2.0 mol of HCl reacts with 1.0 mol of Na2CO3
0.02 mol of HCl reacts with 0.01 mol of Na2CO3
<u>N</u><u>a</u>2CO3>a=<u>1</u><u> </u>mol
<u>2</u><u>H</u>Cl>b=<u>2</u><u> </u>mol
mass= number of mole × molar mass
g=0.01 × [2(23)+ 12+ 3(16)]
g=0.01 × 106
# =1.06 g.
Answer: 36.6°C
Explanation:
Given that,
initial pressure of helium (P1) = 1.20 atm
Initial temperature (T1) = 22.0°C
Final temperature (T2) = ?
Final pressure of helium (P2) = 2.00 atm
Since pressure and temperature are given while volume is constant, apply the formula for pressure's law
P1/T1= P2/T2
1.20 atm / 22.0°C = 2.00 atm / T2
Cross multiply
1.20 atm•T2= 2.00 atm•22°C
1.20 atm•T2= 44 atm•°C
Divide both sides by 1.20 atm
1.20 atm•T2/1.20 atm = 44 atm•°C/1.20 atm
T2 = 36.6°C
Answer:
1) Increases
2) decreases
3) increases
4) decreases
Explanation:
When the intermolecular forces in a liquid increases, the greater vapour pressure of the liquid decreases accordingly.
Since the vapour pressure is proportional to temperature, as temperature increases, the vapour pressure increases alongside.
As intermolecular forces increases, the boiling point increases accordingly since more energy is required to break intermolecular bonds.
Lastly, the greater the surface area, tell greater the vapour pressure since more liquid surface area is now available.