Density = mass/volume
so rearranged mass = volume x density
mass = 8.920 x 45 = 401.4g
rearrange (there are 1000grams in 1kg)
volume = mass/density
volume = 1000/8.920
volume = 112.1076233cm3
Mass, what its made out of, and atomic number
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Answer : The final volume of gas will be, 26.3 mL
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.974 atm
= final pressure of gas = 0.993 atm
= initial volume of gas = 27.5 mL
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the final volume of gas will be, 26.3 mL
You multiply 32 by 2, since there are two hydrogens in every water molecule.