3.3 moles of sulfur
Explanation:
To find the number of moles knowing the number of atoms we use Avogadro's number to formulate the following reasoning:
if in 1 mole of sulfur (S) there are 6.022 × 10²³ atoms of sulfur (S)
then in X moles of sulfur (S) there are 2 × 10²⁴ atoms of sulfur (S)
X = (1 × 2 × 10²⁴) / (6.022 × 10²³)
X = 3.3 moles of sulfur
Learn more about:
Avogadro's number
brainly.com/question/1445383
#learnwithBrainly
Answer:
Water molecules in the solid state, such as in ice and snow, form weak bonds (called hydrogen bonds) to one another. These ordered arrangements result in the basic symmetrical, hexagonal shape of the snowflake.
Explanation:
Answer: 106.905
Explanation: If there are only 2 isotopes, and 1 of them is 48.16%, the second must, by default, be (100 - 48.16%) = 51.84% The final, averaged, atomic mass is 107.868. This is made up of each isotope's atomic mass times the percentage of that isotope in the total sample. The weighted value of the known isotope (109) plus that of the unknown must come to the observed value of 107.868 amu. (107.868 - 52.45 = 55.42). Divide that by the % for that isotope (55.42/0.5184) = 106.90 amu for the second isotope.
<u>Atomic Mass</u> <u>% of Sample</u> <u>Weighted Value</u>
108.905 48.16% 52.45
X 51.84% <u>55.42</u>
107.87
X = (55.42/0.5184) = 106.90 amu
A small portion of matter