The phenomenon known as "salting-out" occurs at very high ionic strengths, when protein solubility declines as ionic strength rises. As a result, salting out may be used to segregate proteins according to how soluble they are in salt solutions.
Because large levels of sodium chloride disturb the bonds and structure of the active site, the rate of enzyme activity will gradually decrease as the concentration of sodium chloride rises. As a result, some of the active sites get denaturized and the starch loses its ability to attach to them. As more enzymes get denatured and eventually cease to function, enzyme activity will steadily wane.
It would be solid
hope this helps
Its number four.Hope that helps feel free to ask me questions:)
Brainliest??
Answer:
There were originally 8 atoms of Potassium-40.
Explanation:
The half-life of a radioactive material is the time taken for half the original material to decay or the time required for a quantity of the radioactive substance to reduce to half of its initial value.
If the original material formed without any Argon-40, it means that the atoms originally present were Potassium-40 atoms.
Presently, there are 7 Argon-40 atoms for every 1 of Potassium-40, we can deduce the number of half-lifes the Potassium-40 has undergone as follows :
After one half-life, (1/2) there will be one Potassium-40 atom for every Argon-40 atom.
After a second half life, 1/2 × 1/2 = 1/4: there will be one Potassium-40 atom for every three atoms of Argon-40.
After a third half-life, 1/4 × 1/2 = 1/8: there will be one Potassium-40 atom for every 7 atoms of Argon-40.
Since there are 1/8 atoms of Potassium-40 presently, there were originally 8 atoms of Potassium-40.