Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
<span>Vinegar and baking soda react to form a new gaseous substance.
</span><span>The reaction between Vinegar and baking soda has been one of the most common examples of Chemical Reaction.</span>
Answer is. gas <span>has the highest entropy.
</span>Entropy is the measure of the molecular disorder<span> and it is system’s thermal </span>energy<span> per unit </span>temperature<span> that is unavailable for doing useful </span>work<span>.
Nitrogen molecules have weakest intermolecular bonds in gas phase and move fast and without order. In solid state movement is much more less.
</span><span>
</span>
Answer:
See explanation
Explanation:
When either pan is heated, energy is transferred via conduction. Conduction is the process by which heat is transferred through a material, the average position of the particles remaining the same.
When the pans are heated, the particles in each pan vibrate faster and transfer this energy rapidly to neighboring particles.
The pan with a thicker base has more particles in it than the pan with lighter weight base. Note that, The rate of heat transfer is inversely proportional to the thickness of the material in question. Hence, the thicker the base, the more the number of particles present and the longer the time it takes for the food to cook.