Answer:
1 ≥ t ≤ 3
Step-by-step explanation:
Given
h(t) = -16t² + 64t + 4
Required
Determine the interval which the bar is at a height greater than or equal to 52ft
This implies that
h(t) ≥ 52
Substitute -16t² + 64t + 4 for h(t)
-16t² + 64t + 4 ≥ 52
Collect like terms
-16t² + 64t + 4 - 52 ≥ 0
-16t² + 64t - 48 ≥ 0
Divide through by 16
-t² + 4t - 3 ≥ 0
Multiply through by -1
t² - 4t + 3 ≤ 0
t² - 3t - t + 3 ≤ 0
t(t - 3) -1(t - 3) ≤ 0
(t - 1)(t - 3) ≤ 0
t - 1 ≤ 0 or t - 3 ≤ 0
t ≤ 1 or t ≤ 3
Rewrite as:
1 ≥ t or t ≤ 3
Combine inequality
1 ≥ t ≤ 3
Answer:
Acute and Obtuse..I cant see any right
Step-by-step explanation:
Here’s the answer. See pictures.
140 if I observed the image correctly.
Answer:
exact value: ![x= \frac{log25}{4}](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7Blog25%7D%7B4%7D)
approximate: x=0.349485
Step-by-step explanation:
Exact Value:
![10^{4x} = 25](https://tex.z-dn.net/?f=10%5E%7B4x%7D%20%3D%2025)
![log (10^{4x})= log 25](https://tex.z-dn.net/?f=log%20%2810%5E%7B4x%7D%29%3D%20log%2025)
![4x = log 25](https://tex.z-dn.net/?f=4x%20%3D%20log%2025)
![x= \frac{log25}{4}](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7Blog25%7D%7B4%7D)
Approximate:
![x= \frac{log25}{4}](https://tex.z-dn.net/?f=x%3D%20%5Cfrac%7Blog25%7D%7B4%7D)
![x=1.39794/4\\](https://tex.z-dn.net/?f=x%3D1.39794%2F4%5C%5C)
![x=0.349485](https://tex.z-dn.net/?f=x%3D0.349485)