a = interest rate of first CD
b = interest rate of second CD
and again, let's say the principal invested in each is $X.
![\bf a-b=3\qquad \implies \qquad \boxed{b}=3+a~\hfill \begin{cases} \left( \frac{a}{100} \right)X=240\\\\ \left( \frac{b}{100} \right)X=360 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \left( \cfrac{a}{100} \right)X=240\implies X=\cfrac{240}{~~\frac{a}{100}~~}\implies X=\cfrac{24000}{a} \\\\\\ \left( \cfrac{b}{100} \right)X=360\implies X=\cfrac{360}{~~\frac{b}{100}~~}\implies X=\cfrac{36000}{b} \\\\[-0.35em] ~\dotfill\\\\](https://tex.z-dn.net/?f=%5Cbf%20a-b%3D3%5Cqquad%20%5Cimplies%20%5Cqquad%20%5Cboxed%7Bb%7D%3D3%2Ba~%5Chfill%20%5Cbegin%7Bcases%7D%20%5Cleft%28%20%5Cfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5C%5C%5C%5C%20%5Cleft%28%20%5Cfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Ba%7D%7B100%7D%20%5Cright%29X%3D240%5Cimplies%20X%3D%5Ccfrac%7B240%7D%7B~~%5Cfrac%7Ba%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B24000%7D%7Ba%7D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7Bb%7D%7B100%7D%20%5Cright%29X%3D360%5Cimplies%20X%3D%5Ccfrac%7B360%7D%7B~~%5Cfrac%7Bb%7D%7B100%7D~~%7D%5Cimplies%20X%3D%5Ccfrac%7B36000%7D%7Bb%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C)


 
        
             
        
        
        
-6.25 is the value of p. First distribute the 8 to the parentheses and then solve the equation
        
                    
             
        
        
        
Answer:
7
Step-by-step explanation:
The ratio of the similar triangles is 
14       49
---- = ------
2          x
Using cross products
14x = 2*49
14x = 98
Divide by 14
14x/14 = 98/7
x =7
 
        
             
        
        
        
Answer:
Step-by-step explanation:
From the graph attached,
Coordinates of the vertices are,
Q(1, 3), R(3, -3), S(0, -2) and T(-2, 1)
Following the rule of translation by 3 units to the right and 2 units down 
(x, y) → (x+3, y-2)
Q(1, 3) → Q''(4, 1)
R(3, -3) → R"(6, -5)
S(0, -2) → S"(3, -4)
T(-2, 1) → T"(1, -1)
Following rule  (rotation of a point by 180° about the origin) will give the image points,
 (rotation of a point by 180° about the origin) will give the image points,
(x, y) → (-x, -y)
Q"(4, 1) → Q'(-4, -1)
R"(6, -5) → R'(-6, 5)
S"(3, -4) → S'(-3, 4)
T"(1, -1) → T'(-1, 1)