Find the slope of the line between the coordinates (-6,-13) and (3,-1)
1 answer:
To find the slope of this line, we must use the equation:

Where
and
can be assigned to either point.
Let's use (-6, -13) as the point "1" and (3, -1) as the point "2":


So now we know that the slope between these two points is
.
You might be interested in
Answer:
22 months it take at all..
Answer:
Step-by-step explanation:
-2m - 5n = 7m - 3n
-9m - 5n = -3n
-9m = -2n
m = 2n/9
g(m)= 2n/9
Answer:
80%
Step-by-step explanation:
28/35=4/5
4/5=0.80
0.80=80%
Answer:
5=35
Step-by-step explanation: