The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Answer:
I think that:
The tendency of an object to resist changes in motion: inertia
Attractive force:gravity
And everything else is right
Explanation:
I am not a physicist
But I passed physics with an A
Answer:
7.3 g (NH₄)₃PO₄
Explanation:
The balanced equation for the reaction is:
H₃PO₄ + 3 NH₃ ----> (NH₄)₃PO₄
To find the mass of ammonium phosphate ((NH₄)₃PO₄) produced, you need to (1) convert grams NH₃ to moles NH₃ (via the molar mass from the periodic table), then (2) convert moles NH₃ to moles (NH₄)₃PO₄ (via mole-to-mole ratio from balanced equation), and then (3) convert moles (NH₄)₃PO₄ to grams (NH₄)₃PO₄ (via molar mass from periodic table). Make sure to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 2 sig figs because the given value (2.5 grams) has 2 sig figs.
Molar Mass (NH₃): 14.01 g/mol + 3(1.008 g/mol)
Molar Mass (NH₃): 17.034 g/mol
Molar Mass ((NH₄)₃PO₄):
3(14.01 g/mol) + 12(1.008 g/mol) + 30.97 g/mol + 4(16.00 g/mol)
Molar Mass ((NH₄)₃PO₄): 149.096 g/mol
2.5 g NH₃ 1 mole NH₃ 1 mole (NH₄)₃PO₄ 149.096 g
--------------- x -------------------- x --------------------------- x --------------------------
17.034 g 3 moles NH₃ 1 mole (NH₄)₃PO₄
= 7.3 g (NH₄)₃PO₄
- increasing the concentration of N₂
- increasing the concentration of O₂
- decreasing the concentration of NO
- increasing the temperature
:)
<span>Intermolecular Forces present in HCl:
The Electronegativity difference between Chlorine and Hydrogen is 0.96 showing that the bond is polar covalent in nature. The Hydrogen atom is partially positive and Chlorine is partially positive making the molecule Dipole. Hence, the Intermolecular forces present in HCl are Dipole-Dipole Interactions.
</span>Intermolecular Forces present in CH₄:
The Electronegativity difference between Chlorine and Hydrogen is 0.35 showing that the bond is non-polar covalent in nature. Hence, the Intermolecular forces present in CH₄ are London Dispersion Forces.