Answer:
Galileo performed a famous experiment where he used a ball rolling on a ramp (inclined plane) to study the motion of objects under the influence of gravity. The ramp allowed him to make more precise measurements because the ball moved more slowly along the ramp than if it were simply dropped. Galileo discovered through this experiment that the objects fell with the same acceleration, proving his prediction true, while at the same time disproving Aristotle's theory of gravity (which states that objects fall at speed proportional to their mass). Galileo's conclusion from this thought experiment was that no force is needed to keep an object moving with constant velocity. Newton took this as his first law of motion. One result of the experiment surprised Galileo, and one surprises us. Galileo found that the heavy ball hit the ground first, but only by a little bit. Except for a small difference caused by air resistance, both balls reached nearly the same speed. And that surprised him. According to history, Galileo’s experiment on falling bodies largely contributed to Isaac Newton’s Law of Gravity. In Galileo’s experiment, he is said to have dropped balls from the Leaning Tower of Pisa. The balls were made of the same material but had different masses. Galileo set out to prove that the time it took for these objects to reach the ground would be the same. Galileo proved that objects reached the ground at the same time,
Explanation:
I think this is right & I hope this helped
Answer : The current passing between the electrodes is, 
Explanation :
First we have to calculate the charge of sodium ion.

where,
q = charge of sodium ion
n = number of sodium ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the charge of chlorine ion.

where,
q' = charge of chlorine ion
n = number of chlorine ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the current passing between the electrodes.



Thus, the current passing between the electrodes is, 
Answer:
Volume of NaOH required = 3.61 L
Explanation:
H2SO3 is a diprotic acid i.e. it will have two dissociation constants given as follows:
--------(1)
where, Ka1 = 1.5 x 10–2 or pKa1 = 1.824
--------(2)
where, Ka2 = 1.0 x 10–7 or pKa2 = 7.000
The required pH = 6.247 which is beyond the first equivalence point but within the second equivalence point.
Step 1:
Based on equation(1), at the first eq point:
moles of H2SO3 = moles of NaOH

Step 2:
For the second equivalence point setup an ICE table:

Initial 1.98 ? 0
Change -x -x x
Equil 1.98-x ?-x x
Here, ?-x =0 i.e. amount of OH- = x
Based on the Henderson buffer equation:
![pH = pKa2 + log\frac{[SO3]^{2-} }{[HSO3]^{-} } \\6.247 = 7.00 + log\frac{x}{(1.98-x)} \\x=0.634 moles](https://tex.z-dn.net/?f=pH%20%3D%20pKa2%20%2B%20log%5Cfrac%7B%5BSO3%5D%5E%7B2-%7D%20%7D%7B%5BHSO3%5D%5E%7B-%7D%20%7D%20%5C%5C6.247%20%3D%207.00%20%2B%20log%5Cfrac%7Bx%7D%7B%281.98-x%29%7D%20%5C%5Cx%3D0.634%20moles)
Volume of NaOH required is:

Step 3:
Total volume of NaOH required = 3.22+0.389 =3.61 L