Answer:
The salt is dissolved by the water and heat. If the pot isn't boiling, the salt wouldn't dissolve, it would stay undissolved.
If a group of scientists have access to one data, from the data they can draw conclusions either through mathematics or just thought experiments.
Those thought experiments is different for any scientist, no one thinks the same especially when the topic is difficult.
For example when talking about parallel universes, scientists have come up with the weirdest examples of a multiverse. Some thinking of a brane universe, while others say that its a landscape universe, quilted universe. All of their 'evidence' seems correct but they have opposite meanings.
A weird analogy is 'religion'. All the religions seem to have 'evidences' (hardly) that attract people towards it, they all make sense but that doesn't mean that their evidence is right.
----
Now if they're trying to break down the data using maths, there could be a great uncertainty and measurement error that if done enough could change the whole idea behind the data.
Interesting question, I can babble for days for this but lets keep it as that
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
Answer:
acceleraions 5.76g and 20.55g
Explanation:
This constant acceleration exercise can be solved using the kinematic equations in one dimension
Vf = Vo + a t
As part of the rest Vo = 0
a = Vf / t
a = 282/5
a = 56.4 m / s2
In relation to the acceleration of gravity
a ’= a / g = 56.4 / 9.8
a ’= 5.76g
To calculate the acceleration to stop we use the same formula
a2 = 282 / 1.40
a2 = 201.4 m / s2
This acceleration of gravity acceleration function is
a2 ’= 201.4 / 9.8
a2 ’= 20.55g
Answer:
60.4 J
Explanation:
The work done by the gas is given by:

where
p is the gas pressure
is the final volume of the gas
is the initial volume
We must convert all the quantities into SI units:



So the work done is
