To solve this problem it is necessary to apply the concept related to wavelength, specifically when the wavelength is observed from a source that is in motion to the observer.
By definition the wavelength is given defined by,

Where
= Observed wavelength
= Wavelength of the source
c = Speed of light in vacuum
u = Relative velocity of the source to the observer
According to our data we have that the wavelength emitted from the galaxy is 1875nm which is equal to the wavelength from the source, while the wavelength from the observer is 
Therefore replacing in the previous equation we have,




Solving for u,







Therefore the speed of the gas relative to earth is 0.02635 times the speed of light.
We want to study the impact of a sledgehammer and a wall.
Before the sledgehammer hits the wall, it has a given velocity and a given mass, so it has momentum and it has kinetic energy.
When it hits the wall, the velocity of the hammer disappears, this means that the energy is transferred to the wall, this "transfer of energy" can be thought of a force applied for a really short time on the wall, which for the third law of Newton, the force is also applied on the hammer.
This is why you feel the impact on the handle when you hit something with a hammer, this also means that some of the energy is dissipated on your arms.
Now, because the wall is made of a material usually not as strong as the head of the sledgehammer, we will see that in this interaction the wall seems more affected than the hammer, but the forces that each one experiences are exactly equal in magnitude.
If you want to learn more, you can read:
brainly.com/question/13952508
How many stairs?
You can use this to find the work
U
W=mgh
And the power by
P=W/T
Answer:
16/22
Explanation:
you add red and blue together
The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4