Answer:
The focus of Lesson 1 is Newton's first law of motion - sometimes referred to as the law of inertia. An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
The car would travel after applying brakes is, d = 14.53 m
Explanation:
Given that,
The time taken to apply brakes fully is, t = 0.5 s
The velocity of the car, v = 29.06 m/s
The distance traveled by the car in 0.5 s, d = ?
The relation between the velocity, displacement, and time is given by the formula
d = v x t m
Substituting the values in the above equation,
d = 29.06 m/s x 0.5 s
= 14.53 m
Therefore, the car would travel after applying brakes is, d = 14.53 m
The answer would be a frog!
Answer:
Time zone is one important factor in difference in location and this in turn affects the result of the resolution and rotation of shadow produced from the sun or other illumination.
Therefore someone at a place might see a clear large shadow due to shinny sun reflection and another a small or dull Shadow at same time if the intensity of the sun or lighting source is going down.
Explanation:
The closer a body/object is to a lighting source the larger the shadow it produces, and the farther the body the smaller the shadow produced.
You continue moving forward, and you HOPE that some of the other
people in your Physics class are seeing this, because it's a great
demonstration of Newton's First Law of Motion.