41y is the answer have a nice day
Answer:
3n^2+9+5n^4+55n
Step-by-step explanation:
Steps
$\left(3n^2+9+5n^4-3n\right)+\left(-9n\left(-7\right)-5n\right)$
$\mathrm{Remove\:parentheses}:\quad\left(a\right)=a,\:-\left(-a\right)=a$
$=3n^2+9+5n^4-3n+9n\cdot\:7-5n$
$\mathrm{Add\:similar\:elements:}\:-3n-5n=-8n$
$=3n^2+9+5n^4-8n+9\cdot\:7n$
$\mathrm{Multiply\:the\:numbers:}\:9\cdot\:7=63$
$=3n^2+9+5n^4-8n+63n$
$\mathrm{Add\:similar\:elements:}\:-8n+63n=55n$
$=3n^2+9+5n^4+55n$
Answer:
-1/3125, 1/625, -1/125, 1/25 , -(1÷5) , 1 , -5
Step-by-step explanation:
1÷625÷(-1÷3 125) = -5
-1÷125÷(1÷625) = -5
(1÷25)÷(-1÷125) = -5
Then the common ratio of the geometric sequence is -5 then we keep multiplying by -5 each time to get the next term:
(1÷25)×(-5) = -(1÷5)
-(1÷5)×(-5) = 1
(1)×(-5) = -5
I think the answer might be 6p^2+3p-63