Answer:
S= 1.40x10⁻⁵mol/L
Explanation:
The Henry's Law is given by the next expression:
(1)
<em>where S: is the solubility or concentration of Ar in water,
: is Henry's law constant and p: is the pressure of the Ar </em>
<u>Since the argon is 0.93%, we need to multiply the equation (1) by this percent:</u>
Therefore, the argon solubility in water is 1.40x10⁻⁵mol/L.
Have a nice day!
Answer:
a) = 258352.5J
b) = 23.63 m/s
c) = 1.8m
Explanation:
Data;
Mass = 925kg
Distance (s) = 28.5m
Force constant (k) = 8.0*10⁴ N/m
g = 9.8 m/s²
a) = work = force * distance
But force = mass * acceleration
Force = 925 * 9.8 = 9065N
Work = F * s = 9065 * 28.5 = 258352.5J
b) acceleration (a) = (v² - u²) / 2s
a = v² / 2s
v² = a * 2s
v² = 9.8 * (2 * 28.5)
v² = 9.8 * 57
v² = 558.6
v = √(558.6)
V = 23.63 m/s
C). The work stops when the work done to raise the spring equals the work done to stop it by the spring
W = ½kx²
258352.5 = ½ * 8.0*10⁴ * x²
(2 * 258352.5) = 8.0*10⁴x²
516705 = 8.0*10⁴x²
X² = 516705 / 8.0*10⁴
X² = 6.46
X = √(6.46)
X = 2.54m
The compression was about 2.54m
It’s 4 because a coiled springs is closely spaced then widen
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.