One very handy electrical formula is
Power dissipated by a resistance = (Voltage)²/(resistance) .
24 kilowatts = (240 v)² / Resistance
Multiply each side by (Resistance):
(Resistance) x (24 kilowatts) = (240 v)²
Divide each side by (24 kilowatts):
Resistance = (240 v)² / (24,000 watts)
Resistance = (57,600 / 24,000) (volt² / volt · Amp)
Resistance = 2.4 (volt/Amp)
Resistance = 2.4 Ohms
It is in equilibrium if its velocity is not changing.
Answer: 1 inclined plane and box mover trolley
2 screw and drill
3 The axle, or rod and wheels
4 slides, ramps, and hills.
5 yes because they help the ball move quicker
6 i am not sure about this one)
Explanation:i do not know i am guessing
The metric unit is the Newton (N), or the
The magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
To find the answer, we need to know about the magnetic field inside the solenoid.
<h3>What's the expression of magnetic field inside a solenoid?</h3>
- Mathematically, the expression of magnetic field inside the solenoid= μ₀×n×I
- n = no. of turns per unit length and I = current through the solenoid
<h3>What's is the magnetic field inside the solenoid here?</h3>
- Here, n = 290/32cm or 290/0.32 = 906
I= 0.3 A
- So, Magnetic field= 4π×10^(-7)×906×0.3 = 3.4×10^(-4) T.
Thus, we can conclude that the magnitude of the magnetic field inside the solenoid is 3.4×10^(-4) T.
Learn more about the magnetic field inside the solenoid here:
brainly.com/question/22814970
#SPJ4