Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of
. As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

When solving for r, we get:

so we can substitute this into our volume of a cone formula:

which simplifies to:


So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

Which simplifies to:

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:

Now we can substitute the provided values into our equation. So we get:

so:

That would be a the first law of newton's laws of motion because it stops from an external force
These applications DO NOT INVOLVE harmful ionizing energy:
- MRI
- ultrasound
- laser surgery
Answer:
2856.96 J
0
0

6.78822 m/s
Explanation:
= Initial velocity = 9.6 m/s
g = Acceleration due to gravity = 9.81 m/s²
h = Height
The athlete only interacts with the gravitational potential energy. Air resistance is neglected.
At height y = 0
Kinetic energy

At height y = 0 the potential energy is 0 as

At maximum height her velocity becomes 0 so the kinetic energy becomes zero.
As the the potential and kinetic energy are conserved
The general equation

Half of maximum height



The velocity of the athlete at half the maximum height is 6.78822 m/s