Answer:
<em>Maximum=70 m</em>
<em>Minimum=26 m</em>
Explanation:
<u>Vector Addition
</u>
Since vectors have magnitude and direction, adding them takes into consideration not only the magnitudes but also their respective directions. Two vectors can be totally collaborative, i.e., point to the same direction, or be totally opposite. In the first case, the magnitude of the sum is at maximum. Otherwise, it's at a minimum.
Thus, the maximum magnitude of the sum is 48+22 = 70 m and the minimum magnitude of the sum is 48-22= 26 m
A. it can be modified or rejected
Answer:
The correct answer is B.
Explanation:
Step 1:
The available regression equation is: Predict height= 0.29 + 0.48 (age).
Here, the predict height is dependent variable and the age is in-dependent variable.
Intercept = 0.29
Slope = 0.48
The given regression equation indicates the y on x model and the intercept coefficients of the regression equation is 0.29 and the slope is 0.48.
Step 2:
The height increases, an average, by 0.48 m per year.
Because co-efficient of slope variable indicate the positive sign and we increase 1 year in age then automatically height increased is 0.48 m.
<h3>
</h3><h3>
The height increases, on average, by 0.48 meter each year.</h3>
Electric force from electomagnetic force and force of gravity from gravitational force
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1