Boiling-point is the point of a pure liquid matter starts to evaporate and change into gaseous phase. It is where the set of conditions such as the pressure and temperature enough to do so. Boiling-point elevation, on the other hand, is the phenomenon of which the boiling point of a pure liquid matter is elevated because of the dissolved substances. A great example would be the boiling point of a distilled water (pure water) which is lesser than the boiling point of a sea water because of the dissolved salts. A pure water boils at 100°C at atmospheric pressure while a salt water boils at higher temperature than 100°C at the same pressure. Thus, the answer is D.
I think there is a lack of information in the given problem above such as the grams of copper sulfate and sodium hydroxide that was used in the experiment. Kindly resubmit the question with the complete details so that we can help you. Thank you.
Answer:
0.981atm
Explanation:
According ot Dalton's law total pressure of a mixture of non-reactive gas is equal to sum of partial pressures of individual gases.
total pressure= 1.01at
Number of gases=2
Gases: water vapor and hydrogen
partial pressure of water vapor= 0.029atm
1.01= partial pressure of water vapor+ partial pressure of hydrogen
1.01= 0.029 + partial pressure of hydrogen
partial pressure of hydrogen = 0.981atm
1 mole has 6.02*10^23 molecules in it.
1 nickel (II) chloride molecule, NiCl2, has 1 Ni atom in it.
so 1 mole of nickel (II) chloride molecule has 1 mole of Ni atom in it.
so 100 moles of nickel (II) chloride molecule has 100*6.02*10^23
= 6.02*10^25 Ni atom in it.
Answer : This reaction is an exothermic reaction.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product.
Enthalpy of reaction : It is the difference between the energy of product and the reactant. It is represented as
.
The balanced chemical reaction will be:

From the reaction we conclude that the heat energy is released during the reaction that means this reaction is an exothermic reaction.
Hence, the reaction is an exothermic reaction.