First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
102 grams of ammonia is formed when 3 moles of nitrogen and 6.7 moles of hydrogen reacts.
Explanation:
The equation given is of Haeber's process in which the nitrogen is limiting factor in the ammonia formation and hydrogen if in excess gets delimited.
We know that 1 mole of Nitrogen gives 2 moles of ammonia.
We have 3 moles of nitrogen here,
So, 6 moles of ammonia will be form
so from the formula
no of moles=mass/atomic mass
mass= no. of moles*atomic mass
= 6*17
= 102 grams of ammonia will be formed.
So, 6 moles or 102 grams of ammonia is formed when 3 mole of nitrogen and 6.7 mole of hydrogen reacts.
H+O>h2o I believe this is the answer
The radius of the electron's or basically the energy level for which the electron is found orbiting the nucleus of he hydrogen atom, as the principal quantum number tells us primarily the energy level that the electron will be found, is it the 1st, 2nd, and 3rd. The other quantum numbers tells us more specifically as per the subshell of the main shell the electron is in, the spin of the electron etc.
Answer:
BaS + PtF2 -----> BaF2 + PtS
Explanation:
BaS + PtF2 -----> BaF2 + PtS