Answer:
No, ΔE does not always equal zero because it refers to the systems internal energy, which is affected by heat and work
Explanation:
According to the first law of thermodynamics, energy is neither created nor destroyed. This implies that the total energy of a system is always a constant.
So, according to the first law of thermodynamics we have that ΔE = q + w. This means that the value of ΔE depends on q (heat) and w(work). Hence ΔE is not always zero since it depends on the respective values of q and w.
Answer:
<h2>Translate your language to English </h2>
Answer:
- <u>Purpose of Iodine:</u>
Iodine plays a vital role in thyroid health. Our thyroid gland, which is located at the base of the front of your neck, helps regulate hormone production. These hormones control your metabolism and heart health.
The symbol of Iodine is " I ".
Atomic mass of Iodine is 126.90447 u
No. of protons in Iodine is 53.
No. of neutrons in Iodine is 74.
No. of electrons in Iodine is 53.
The answer is 19.9 grams cadmium.
Assuming there was no heat leaked from the system, the heat q lost by cadmium would be equal to the heat gained by the water:
heat lost by cadmium = heat gained by the water
-qcadmium = qwater
Since q is equal to mcΔT, we can now calculate for the mass m of the cadmium sample:
-qcadmium = qwater
-(mcadmium)(0.850J/g°C)(38.6°C-98.0°C)) = 150.0g(4.18J/g°C)(38.6°C-37.0°C)
mcadmium = 19.9 grams
Answer is: mass of unused sulfur is 5.87 grams.
Balanced chemical reaction: C + 2S → CS₂.
m(C) = 12.0 g; mass of carbon.
m(S) = 70.0 g; mass of sulfur.
n(C) = m(C) ÷ M(C).
n(C) = 12 g ÷ 12 g/mol.
n(C) = 1 mol; amount of substance.
n(S) = m(S) ÷ M(S).
n(S) = 70 g ÷ 32.065 g/mol.
n(S) = 2.183 mol.
From chemical reaction: n(C) : n₁(S) = 1 : 2.
n₁(S) = 1 mol · 2 = 2 mol.
Δn(S) = n(S) - n₁(S).
Δn(S) = 2.183 mol - 2 mol.
Δn(S) = 0.183 mol; amount of unused sulfur.
Δm(S) = 0.183 mol · 32.065 g/mol.
Δm(S) = 5.87 g.